Skip to main content
Log in

The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The summer surface urban heat island (SUHI) of the city of Bucharest (Romania) is investigated in terms of its shape, intensity, extension and links to land cover. The study employs land surface temperature (LST) data retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra (EOS AM-1) and Aqua (EOS PM-1) NASA satellites, between 2000 and 2012. Based on the Rodionov regime shift index, the significant changing points in the land surface temperature values along transverse profiles crossing the city’s centre were considered as SUHI’s limits. The thermal difference between the SUHI and several surrounding buffers defines the SUHI’s intensity. The night-time SUHI’s geometry is more regular, and its intensity is slightly lower than during the day, while the land cover exerts a strong influence on Bucharest’s LST. In summary, the study proposes a methodology to delimit and quantify the average SUHI based on the statistical significance of the shift between the urban area and its surroundings, and the limitations of the method are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Basara JB, Basara HG, Illston BG, Crawford1 KC (2010) The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv Meteor Article ID 230365, 10 pages, DOI: 10.1155/2010/230365

  • Benali A, Carvalho AC, Nunes JP, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121. doi:10.1016/j.rse.2012.04.024

    Article  Google Scholar 

  • Büttner G, Kosztra B, Maucha G, Pataki R (2012) Implementation and achievements of CLC2006. Revised Final Draft, 65 pp

  • Cheval S, Dumitrescu A (2009) The July urban heat island of Bucharest as derived from MODIS images. Theor Appl Climatol 96(1–2):145–153

    Article  Google Scholar 

  • Cheval S, Dumitrescu A, Bell A (2009) The urban heat island of Bucharest during the extreme high temperatures of July 2007. Theor Appl Climatol 97:391–401

    Article  Google Scholar 

  • Christen A, Vogt R (2004) Energy and radiation balance of a Central European city. Int J Climatol 24:1395–1421. doi:10.1002/joc.1074

    Article  Google Scholar 

  • EEA (2013) Corine Land Cover 2006 seamless vector data. http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2 (accessed at 15 June 2013)

  • Gabriel KMA, Endlicher WR (2011) Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ Pollut 159:2044–2050. doi:10.1016/j.envpol.2011.01.016

    Article  Google Scholar 

  • Hengl T, Heuvelink GBM, Tadic M, Pebesma EJ (2012) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor Appl Climatol 107:265–277. doi:10.1007/s00704-011-0464-2

    Article  Google Scholar 

  • INS (2012) Population and its demographic structure. National Institute of Statistics. https://statistici.insse.ro/shop/index.jsp?page=tempo3&lang=en&ind=POP101A (accessed at 10 July 2013)

  • LP DAAC (2013) MODIS Data Products Table. https://lpdaac.usgs.gov/products/modis_products_table/ (accessed at 1 July 2013)

  • Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 3, L12501. doi:10.1029/2008GL033998

    Google Scholar 

  • MODIS land team (2011) Status for: land surface temperature and emissivity (MOD11) http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MOD11 (accessed at 1 July 2013)

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7:769–779

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126–135

    Article  Google Scholar 

  • Ren Z, He X, Zheng H, Zhang D, Yu X, Shen G, Guo R (2013) Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. For 4:868–886. doi:10.3390/f4040868

    Google Scholar 

  • Rizwan AM, Denis YCL, Liu C (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20:120–128

    Article  Google Scholar 

  • Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31(9):L09204. doi:10.1029/2004GL019448

    Google Scholar 

  • Rodionov SN, Overland JE (2005) Application of a sequential regime shift detection method to the Bering Sea. ICES J Mar Sci 62:328–332. doi:10.1016/j.icesjms.2005.01.013

    Article  Google Scholar 

  • Schwarz N, Lautenbach S, Seppelt R (2011) Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens Environ 115(12):3175–3186. doi:10.1016/j.rse.2011.07.003

    Article  Google Scholar 

  • Schwarz N, Schlink U, Franck U, Großmann K (2012) Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—an application for the city of Leipzig (Germany). Ecol Indic 18:693–704. doi:10.1016/j.ecolind.2012.01.001

    Article  Google Scholar 

  • Spronken-Smith RA, Oke TR (1998) The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens 19(11):2085–2104. doi:10.1080/014311698214884

    Article  Google Scholar 

  • Stathopoulou M, Cartalis C, Petrakis M (2007) Integrating Corine land cover data and landsat TM for surface emissivity definition: application to the urban area of Athens, Greece. Int J Remote Sens 28(15):3291–3304. doi:10.1080/01431160600993421

    Article  Google Scholar 

  • Stewart ID (2011) A systematic review and scientific critique of methodology in modern urban heat island literature. Int J Climatol 31(2):200–217. doi:10.1002/joc.2141

    Article  Google Scholar 

  • Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ LIF, Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Meteor 54:75–84

    Google Scholar 

  • Temnerud J, Weyhenmeyer GA (2008) Abrupt changes in air temperature and precipitation: do they matter for water chemistry? Glob Biogeochem Cy 22:GB2008. doi:10.1029/2007GB003023

    Article  Google Scholar 

  • Tumanov S, Stan-Sion A, Lupu A, Soci C, Oprea C (1999) Influences of the city of Bucharest on weather and climate parameters. Atmos Environ 33:4173–4183

  • Unger J, Sümeghy Z, Zoboki J (2001) Temperature cross-section features in an urban area. Atm Res 58:117–127

    Article  Google Scholar 

  • UNHSP (2007) Enhancing urban safety and security: global report on Human Settlements 2007 (Part IV), p 448

  • Vargo J, Habeeb D, Stone B Jr (2013) The importance of land cover change across urban–rural typologies for climate modeling. J Environ Manag 114:243–252. doi:10.1016/j.jenvman.2012.10.007

    Article  Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li Z-L (2004) Quality assessment and validation of the MODIS global land surface temperature. Int J Rem Sens 25(1):261–274

    Article  Google Scholar 

  • Weng Q (2009) Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J Photogram & Remote Sens 64:335–344

    Article  Google Scholar 

  • Wouters H, De Ridder K, Demuzere M, Lauwaet D, van Lipzig NPM (2013) The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006. Atmos Chem Phys 13:8525–8541. doi:10.5194/acp-13-8525-2013

    Article  Google Scholar 

  • Zoran M, Savastru R, Savastru D, Tautan MN, Dida MR (2012) Satellite observation of urban heat island effect. In: Perakis KG, Moysiadis KA (eds) 32nd EARSeL Symposium Proceedings Advances in Geosciences, Mykonos Island, Greece, 21 May - 24 May 2012: 618–630

Download references

Acknowledgments

The authors would like to warmly acknowledge Sergiu Ioan (National Meteorological Administration, Bucharest) and Sam Hardy (University of Manchester) for their support in improving the English used in this paper and Prof. Dr. Eng. Dan Constantinescu, for his long-term encouragement and highly competent suggestions regarding urban climate research. We also thank to the two anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Cheval.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure

Daytime (A.) and nighttime (B.) SUHI limits for each summer month and aggregated (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheval, S., Dumitrescu, A. The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theor Appl Climatol 121, 631–640 (2015). https://doi.org/10.1007/s00704-014-1250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1250-8

Keywords

Navigation