Advertisement

Theoretical and Applied Climatology

, Volume 121, Issue 3–4, pp 413–424 | Cite as

Natural and forced air temperature variability in the Labrador region of Canada during the past century

  • Robert G. WayEmail author
  • Andre E. Viau
Original Paper

Abstract

Evaluation of Labrador air temperatures over the past century (1881–2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881–2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

Keywords

Root Mean Square Error Climate Index Mean Absolute Difference Arctic Oscillation Atlantic Multidecadal Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2) 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Allard M, Wang B, Pilon JA (1995) Recent cooling along the southern shore of Hudson Strait, Quebec, Canada, documented from permafrost temperature measurements. Arct Alpine Res 27:157–166CrossRefGoogle Scholar
  3. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38, L05805Google Scholar
  4. Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys Res Lett 39, L19501Google Scholar
  5. Banfield CE, Jacobs JD (1998) Regional patterns of temperature and precipitation for Newfoundland and Labrador during the past century. Can Geogr 42:354–364CrossRefGoogle Scholar
  6. Belkin IM (2004) Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys Res Lett 31:L0830Google Scholar
  7. Belkin I, Levitus S, Antonov J, Malmberg S (1998) “Great Salinity Anomalies” in the North Atlantic. Prog Oceanogr 41:1–68CrossRefGoogle Scholar
  8. Brown RJE (1979) Permafrost distribution in the southern part of the discontinuous zone in Quebec and Labrador. Geogr Phys Quatern 33:279–289Google Scholar
  9. Brown BR, Lemay M, Allard M, Barrand NE, Barrette C, Bégin Y, Bell T, Bernier M, Bleau S, Chau-mont D, Dibike Y, Frigon A, Leblanc P, Paquin D, Sharp MJ, Way R (2012) Climate variability and change in the Canadian Eastern Subarctic IRIS region (Nunavik and Nunatsiavut). In: Brown BR, Lemay M, Allard M, Barrand NE, Barrette C, Bégin Y, Bell T, Bernier M, Bleau S, Chau-mont D, Dibike Y, Frigon A, Leblanc P, Paquin D, Sharp MJ, Way R, Allard M, Nunavik LM, Nunatsiavut: From science to policy (eds) An Integrated Regional Impact Study (IRIS) of climate change and modernization. ArcticNet Inc., Quebec City, pp 57–93Google Scholar
  10. Chylek P, Dubey MK, Lesins G, Li J, Hengartner N (2013) Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation and Pacific decadal oscillation on southwestern US climate: past, present and future. Clim Dyn. doi: 10.1007/s00382-013-1933-3 Google Scholar
  11. Chylek P, Klett J, Lesins G, Dubey MK, Hengartner N (2014) The Atlantic Multi-decadal Oscillation as a dominant factor of oceanic influence on climate. Geophys Res Lett. doi: 10.1002/2014GL059274 Google Scholar
  12. Clette F, Berghmans D, Vanlommel P, Van der Linden RAM, Koeckelenbergh A, Wauters L (2007) From the Wolf number to the International Sunspot Index: 25 years of SIDC. Adv Space Res 40:919–928CrossRefGoogle Scholar
  13. Cohen J, Foster J, Barlow M, Saito K, Jones J (2010) Winter 2009–2010: a case study of an extreme Arctic Oscillation event. Geophys Res Lett 37, L17707Google Scholar
  14. Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007CrossRefGoogle Scholar
  15. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc. doi: 10.1002/qj.2297 Google Scholar
  16. D’Arrigo R, Buckley B, Kaplan S, Woollett J (2003) Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Clim Dyn 20:219–228Google Scholar
  17. D’Arrigo R, Wilson R, Anchukaitis KJ (2013) Volcanic cooling signal in tree ring temperature records for the past millennium. J Geophys Res-Atmos 111:9000–9010CrossRefGoogle Scholar
  18. d’Ogreville M, Peltier WR (2007) On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: might they be related? Geophys Res Lett 34, L23705Google Scholar
  19. Demarée GR, Ogilvie AEJ (2008) The Moravian missionaries at the Labrador coast and their centuries-long contribution to instrumental meteorological observations. Clim Chang 91:423–450CrossRefGoogle Scholar
  20. Deser C, Holland M, Reverdin G, Timlin M (2000) Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J Geophys Res Oceans 107:1–12. doi: 10.1029/2000JC000683 Google Scholar
  21. Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33, L08705Google Scholar
  22. Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519CrossRefGoogle Scholar
  23. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Garcia Marquéz JR, Gruber B, Lafourcade B, Leitao PJ, Munkemuller T, McClean C, Osborne PE, Reineking B, Schroder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  24. Elliott DL, Short SK (1979) The Northern limit of trees in labrador: a discussion. Arctic 32:201–206CrossRefGoogle Scholar
  25. Finnis J (2013). Projected impacts of climate change for the province of newfoundland and labrador. Office of Climate Change, Energy Efficiency and Emissions Trading, Provincial Government of Newfoundland and Labrador. Technical Report, 134 ppGoogle Scholar
  26. Folland CK, Colman AW, Smith DM, Boucher O, Parker DE, Vernier JP (2013) High predictive skill of global surface temperature a year ahead. Geophys Res Lett 40:761–767CrossRefGoogle Scholar
  27. Foster G, Rahmstorf S (2011) Global temperature evolution 1979–2010. Environ Res Lett 6:044022CrossRefGoogle Scholar
  28. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39, L06801Google Scholar
  29. Grossman I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res-Atmos 114, D24107CrossRefGoogle Scholar
  30. Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233CrossRefGoogle Scholar
  31. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48, RG4004CrossRefGoogle Scholar
  32. Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449CrossRefGoogle Scholar
  33. Hiljmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  34. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269:676–679CrossRefGoogle Scholar
  35. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  36. Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Mod Dev 4:543–570CrossRefGoogle Scholar
  37. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res-Atmos 117, D05127Google Scholar
  38. Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn 41:1345–1364CrossRefGoogle Scholar
  39. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc Int Conf Art Int 14:1137–1145Google Scholar
  40. Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35, L18701CrossRefGoogle Scholar
  41. Mann PS (2006) Introductory statistics. Wiley, New JerseyGoogle Scholar
  42. Maxwell JB (1981) Climatic regions of the Canadian Arctic Islands. Arctic 34:225–240Google Scholar
  43. Rhode R, Muller RA, Jacobsen R, Muller E, Perimutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C (2013a) A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinf Geostat 1:1–7. doi: 10.4172/2327-4581.1000101 Google Scholar
  44. Rhode R, Muller RA, Jacobsen R, Perlmutter S, Rosenfeld A, Wurtele J, Curry J, Wickham C, Mosher S (2013b) Berkeley earth temperature averaging process. Geoinf Geostat 2:1–13. doi: 10.4172/2327-4581.1000103 Google Scholar
  45. Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn 41:3301–3315CrossRefGoogle Scholar
  46. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98:22987–22994CrossRefGoogle Scholar
  47. Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959–964CrossRefGoogle Scholar
  48. Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim 26:1230–1248CrossRefGoogle Scholar
  49. Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res-Atmos 109, D05104CrossRefGoogle Scholar
  50. Smith T, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  51. Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J Geophys Res-Atmos 107. doi:  10.1029/2002JD002090
  52. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res-Atmos 111, D07107CrossRefGoogle Scholar
  53. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc B 36:111–147Google Scholar
  54. Stoner AMK, Hayhoe K, Wuebbles DJ (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Clim 22:4348–4372CrossRefGoogle Scholar
  55. Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winters extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036CrossRefGoogle Scholar
  56. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  57. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  58. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33, L12704CrossRefGoogle Scholar
  59. Trouet V, van Oldenborgh GJ (2013) KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree Ring Res 69:3–13CrossRefGoogle Scholar
  60. van Oldenborgh G, te Raa LA, Dijkstra HA, Philip SY (2009) Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci 5:293–301CrossRefGoogle Scholar
  61. Viau A, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330CrossRefGoogle Scholar
  62. Wenner CG (1947) Pollen diagrams from Labrador. Geogr Ann 29:137–374Google Scholar
  63. Wolf J, Allice I, Bell T (2013) Values, climate change, and implications for adaptation: evidence from two communities in Labrador, Canada. Global Environ Chang 23:548–562CrossRefGoogle Scholar
  64. Wood KR, Overland JE, Jonsson T, Smoliak BV (2010) Air temperature variations on the Atlantic-Arctic boundary since 1802. Geophys Res Lett 37, L17708Google Scholar
  65. Woollings T, Harvey B, Masato G (2014) Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environ Res Lett 9:014002CrossRefGoogle Scholar
  66. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like Interdecadal Variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar
  67. Zhang Z, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38:395–429CrossRefGoogle Scholar
  68. Zuur AF, Leno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Method Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of GeographyUniversity of OttawaOttawaCanada
  2. 2.Laboratory for Paleoclimatology and Climatology, Department of GeographyUniversity of OttawaOttawaCanada

Personalised recommendations