Theoretical and Applied Climatology

, Volume 120, Issue 3–4, pp 797–810 | Cite as

The role of ENSO and MJO on rapid intensification of tropical cyclones in the Bay of Bengal during October–December

  • M. S. Girishkumar
  • K. Suprit
  • S. Vishnu
  • V. P. Thanga Prakash
  • M. Ravichandran
Original Paper

Abstract

The influence of El Niño/Southern Oscillation (ENSO) and Madden–Julian Oscillation (MJO) and their combined effect on the rapid intensification (RI) of tropical cyclones (TCs) in the Bay of Bengal (BoB) during the primary cyclone season (October–December) is investigated. An empirical index, called genesis potential index (GPI), is used to quantify the relative importance of four environmental parameters responsible for the modulation of TCs characteristics. The analysis shows that TC frequency and RI of TC’s is higher in La Niña than El Niño regime during the primary TC season in the BoB. The combined effect of enhancement (reduction) in mid-tropospheric humidity (primary factor) and relative vorticity (secondary factor) played a major role in the enhancement (reduction) of the TC activity under La Niña (El Niño) regime. In addition, when the MJO is active over the BoB (phases 3–4; characterized by enhanced convective activity in the BoB) under La Niña regime, environmental conditions were more conducive for enhancement of TC activity and RI of TCs compared to corresponding MJO phase under El Niño regime. Increase in mid-tropospheric humidity and reduction in vertical wind shear were identified as the primary and secondary factors enhancing the likelihood of RI of TCs in the BoB during phases 3–4 of MJO under La Niña regime. Further, the role of accumulated tropical cyclone heat potential (ATCHP) on the RI of TC during primary TC season is also investigated. Our analysis demonstrates that ATCHP is large for TCs which undergo RI compared to TCs not undergoing RI.

References

  1. Ali MM, Jagadeesh PSV, Jain S (2007) Effects of eddies on Bay of Bengal cyclone intensity. Eos Trans Am Geophys Union 88:93–95CrossRefGoogle Scholar
  2. Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos-Ocean 35:367–383CrossRefGoogle Scholar
  3. Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J Geophys Res 107:4801CrossRefGoogle Scholar
  4. Cai W, Pan A, Roemmich D, Cowan T, Guo X (2009) Argo profiles a rare occurrence of three consecutive positive Indian Ocean Dipole events, 2006–2008. Geophys Res Lett 36, L08701. doi:10.1029/2008GL037038 CrossRefGoogle Scholar
  5. Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834CrossRefGoogle Scholar
  6. Camargo SJ, Wheeler MC, Sobel AH (2009) Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J Atmos Sci 66:3061–3074CrossRefGoogle Scholar
  7. Chen GT-J, Wang C-C, Lin L-F (2006) A diagnostic study of a retreating Mei-yu front and the accompanying low-level jet formation and intensification. Mon Weather Rev 134:874–896CrossRefGoogle Scholar
  8. Chu JH, Sampson CR, Levine AS, Fukada E (2002) The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. Ref. NRL/MR/7540-02-15 Nav Res Lab Washington D. CGoogle Scholar
  9. Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796. doi:10.1175//2562.1 CrossRefGoogle Scholar
  10. DeMaria M (1996) The effect of vertical shear on tropical cyclone intensity change. J Atmos Sci 53:2076–2088. doi:10.1175/1520-0469(1996)053<2076:TEOVSO> 2.0.CO;2 CrossRefGoogle Scholar
  11. Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–669. doi:10.1038/44326 CrossRefGoogle Scholar
  12. Emanuel KA, Nolan DS (2004) Tropical cyclone activity and global climate. Preprints, 26th Conf on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241Google Scholar
  13. Felton C, Subrahmanyam SB, Murty VSN (2013) ENSO-modulated cyclogenesis over the Bay of Bengal. J Clim 26:9806–9818. doi:10.1175/JCLI-D-13-00134.1 CrossRefGoogle Scholar
  14. Girishkumar MS, Ravichandran M (2012) The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J Geophys Res. doi:10.1029/2011JC007417 Google Scholar
  15. Goswami BN, Ajayamohan RS, Xavier PK, Sengupta D (2003) Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys Res Lett 30(8):1431. doi:10.1029/2002GL016734 CrossRefGoogle Scholar
  16. Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700CrossRefGoogle Scholar
  17. Gray WM (1979) Hurricanes: their formation, structure and likely role in the general circulation. Meteorology Over the Tropical Oceans, edited by D.B. Shaw, Ed., Royal Meteorological Society, James Glaisher House, Grenville Place, Bracknell, Berks, RG 12 1BX, 155–218Google Scholar
  18. Halkides D, Lee T (2009) Mechanisms controlling seasonal-to-interannual mixed-layer temperature variability in the south eastern tropical Indian Ocean. J Geophys Res 114, C02012. doi:10.1029/2008JC004949 Google Scholar
  19. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  20. Kaplan J, DeMaria MJ, Knaff A (2010) A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific Basins. Weather Forecast 25:220–241. doi:10.1175/2009WAF2222280.1 CrossRefGoogle Scholar
  21. Klotzbach PJ (2012) El Niño–Southern Oscillation, the Madden–Julian Oscillation and Atlantic basin tropical cyclone rapid intensification. J Geophys Res. doi:10.1029/2012JD017714 Google Scholar
  22. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone best track data. Bull Am Meteorol Soc 91:363–376. doi:10.1175/2009BAMS2755.1 CrossRefGoogle Scholar
  23. Kotal SD, Tyagi A, Bhowmik SKR (2012) Potential vorticity diagnosis of rapid intensification of very severe cyclone GIRI (2010) over the Bay of Bengal. Nat Hazards 60(2):61–48. doi:10.1007/s11069-011-0024-1 CrossRefGoogle Scholar
  24. Krishnamohan KS, Mohankumar K, Joseph PV (2012) The influence of Madden–Julian Oscillation in the genesis of North Indian Ocean tropical cyclones. Theor Appl Climatol 109(1–2):271–282. doi:10.1007/s00704-011-0582-x CrossRefGoogle Scholar
  25. Leipper DF, Volgenau D (1972) Hurricane heat potential of the Gulf of Mexico. J Phys Oceanogr 2:218–224CrossRefGoogle Scholar
  26. Li Z, Yu W, Li T, Murty VSN, Tangang F (2013) Bimodal character of cyclone climatology in Bay of Bengal modulated by monsoon seasonal cycle. J Clim 26:3. doi:10.1175/JCLI-D-11-00627.1 CrossRefGoogle Scholar
  27. Liebmann B, Smith CA (1996) Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  28. Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J Meteorol Soc Jpn 72:401–412Google Scholar
  29. Lin I-I, Chen CH, Pun IF, Liu T, Wu C-CW (2009) Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys Res Lett 36, L03817. doi:10.1029/2008GL035815 Google Scholar
  30. Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837CrossRefGoogle Scholar
  31. McPhaden MJ (2002) El Niño and La Niña: Causes and global consequences. Encyclopedia of Global Environmental Change Anonymous John Wiley and Sons LTD 353-370Google Scholar
  32. Pohl B, Matthews AJ (2007) Observed changes in the lifetime and amplitude of the Madden–Julian Oscillation associated with inter annual ENSO sea surface temperature anomalies. J Clim 20:2659–2674. doi:10.1175/JCLI4230.1 CrossRefGoogle Scholar
  33. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  34. Sadhuram Y, Rao BP, Rao DP, Shastri PNM, Subrahmanyam MV (2004) Seasonal variability of cyclone heat potential in the Bay of Bengal. Nat Hazards 32:191–209. doi:10.1023/B:NHAZ.0000031313.43492.a8 CrossRefGoogle Scholar
  35. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  36. Sampson CR, Kaplan J, Knaff J, DeMaria M, Sisko C (2011) A deterministic rapid intensification aid. Weather Forecast 26:579–585. doi:10.1175/WAF-D-10-05010.1 CrossRefGoogle Scholar
  37. Sarachik ES, Cane MA (2010) The El Niño-Southern Oscillation phenomenon. Cambridge University Press, LondonCrossRefGoogle Scholar
  38. Tziperman E, Cane MA, Zebiak SE, Xue Y, Blumenthal B (1998) Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J Clim 11:2191–2199CrossRefGoogle Scholar
  39. Vissa NK, Satyanarayana ANV, Kumar BP (2013) Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal. Nat Hazards. doi:10.1007/s11069-013-0625-y Google Scholar
  40. Wada A, Usui N (2007) Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. J Oceanogr 63:427–447. doi:10.1007/s10872-007-0039-0 CrossRefGoogle Scholar
  41. Wada A, Usui N, Sato K (2012) Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. J Geophys Res. doi:10.1029/2012JD01758 Google Scholar
  42. Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J Clim 16:1195–1211. doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2 CrossRefGoogle Scholar
  43. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. doi:10.1175/1520-0493 CrossRefGoogle Scholar
  44. Wu L, Su H, Fovell RG, Wang B, Shen JT, Kahn BH, Hristova-Veleva SM, Lambrigtsen BH, Fetzer EJ, Jiang JH (2012) Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys Res Lett 39. doi: 10.1029/2012GL053546Google Scholar
  45. Yanase W, Satoh M, Taniguchi H, Fujinami H (2012) Seasonal and intra seasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon. J Clim 25:2914–2930. doi:10.1175/JCLI-D-11-00208.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • M. S. Girishkumar
    • 1
  • K. Suprit
    • 1
  • S. Vishnu
    • 1
  • V. P. Thanga Prakash
    • 1
  • M. Ravichandran
    • 1
  1. 1.Indian National Centre for Ocean Information Services (ESSO-INCOIS)HyderabadIndia

Personalised recommendations