Theoretical and Applied Climatology

, Volume 120, Issue 1–2, pp 87–98 | Cite as

Effects of climate change on daily minimum and maximum temperatures and cloudiness in the Shikoku region: a statistical downscaling model approach

  • Kenichi TatsumiEmail author
  • Tsutao Oizumi
  • Yosuke Yamashiki
Original Paper


In this study, we present a detailed analysis of the effect of changes in cloudiness (CLD) between a future period (2071–2099) and the base period (1961–1990) on daily minimum temperature (TMIN) and maximum temperature (TMAX) in the same period for the Shikoku region, Japan. This analysis was performed using climate data obtained with the use of the Statistical DownScaling Model (SDSM). We calibrated the SDSM using the National Center for Environmental Prediction (NCEP) reanalysis dataset for the SDSM input and daily time series of temperature and CLD from 10 surface data points (SDP) in Shikoku. Subsequently, we validated the SDSM outputs, specifically, TMIN, TMAX, and CLD, obtained with the use of the NCEP reanalysis dataset and general circulation model (GCM) data against the SDP. The GCM data used in the validation procedure were those from the Hadley Centre Coupled Model, version 3 (HadCM3) for the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios and from the third generation Coupled Global Climate Model (CGCM3) for the SRES A2 and A1B scenarios. Finally, the validated SDSM was run to study the effect of future changes in CLD on TMIN and TMAX. Our analysis showed that (1) the negative linear fit between changes in TMAX and those in CLD was statistically significant in winter while the relationship between the two changes was not evident in summer, (2) the dependency of future changes in TMAX and TMIN on future changes in CLD were more evident in winter than in other seasons with the present SDSM, (3) the diurnal temperature range (DTR) decreased in the southern part of Shikoku in summer in all the SDSM projections while DTR increased in the northern part of Shikoku in the same season in these projections, (4) the dependencies of changes in DTR on changes in CLD were unclear in summer and winter. Results of the SDSM simulations performed for climate change scenarios such as those from this study contribute to local-scale agricultural and hydrological simulations and development of agricultural and hydrological models.


General Circulation Model Diurnal Temperature Range Validation Period Statistical Downscaling Future Climate Change Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

704_2014_1152_MOESM1_ESM.doc (4.6 mb)
ESM 1 (DOC 4741 kb)


  1. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chan 81:1–6. doi: 10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  2. Chu JT, Xia J, Xu CY, Singh VP (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol 99(1–2):149–161. doi: 10.1007/s00704-009-0129-6 CrossRefGoogle Scholar
  3. Coulibaly P (2004) Downscaling daily extreme temperature with genetic programming. Geophys Res Lett 31(16), L16203. doi: 10.1029/2004GL020075 CrossRefGoogle Scholar
  4. Dai A, Del Genio AD, Fung IY (1997) Cloud, precipitation and temperature range. Nature 386:665–666. doi: 10.1038/386665b0 CrossRefGoogle Scholar
  5. DAI CGCM3 Predictors (2008) Sets of Predictor Variables Derived from CGCM3 T47 and NCEP/NCAR Reanalysis. Version 1.1, April 2008, Montreal, QC, Canada, pp 1–15Google Scholar
  6. Dai A, Trenberth KE (1999) Effects of clouds, soil moisture, precipitation and water vapor on diurnal temperature range. J Clim 12:2451–2473. doi: 10.1175/1520-0442(1999)012 CrossRefGoogle Scholar
  7. Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom. Clim Chan 69(2–3):245–268. doi: 10.1007/s10584-005-1157-6 CrossRefGoogle Scholar
  8. Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307(1–4):145–163. doi: 10.1016/j.jhydrol.2004.10.012 CrossRefGoogle Scholar
  9. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367. doi: 10.1126/science.277.5324.364 CrossRefGoogle Scholar
  10. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27(12):1547–1578. doi: 10.1002/joc.1556 CrossRefGoogle Scholar
  11. Gachon P, Dibike Y (2007) Temperature change signals in northern Canada: convergence of statistical downscaling results using two driving GCMs. Int J Climatol 27(12):1623–1641. doi: 10.1002/joc.1582 CrossRefGoogle Scholar
  12. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168. doi: 10.1007/s003820050010 CrossRefGoogle Scholar
  13. Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Environ Res Risk Assess 25(4):475–484. doi: 10.1007/s00477-010-0416-x CrossRefGoogle Scholar
  14. Hessami M, Gachon P, Ouarda TBMJ, St-Hilaire A (2008) Automated regression-based statistical downscaling tool. Environ Model Softw 23(6):813–834. doi: 10.1016/j.envsoft.2007.10.004 CrossRefGoogle Scholar
  15. Horton B (1995) Geographical distribution of changes in maximum and minimum temperatures. Atmos Res 37(103):101–117. doi: 10.1016/0169-8095(94)00083-P CrossRefGoogle Scholar
  16. Huang J, Zhang J, Zhang Z, Sun S, Yao J (2012) Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theor Appl Climatol 108(3–4):325–343. doi: 10.1007/s00704-011-0536-3 CrossRefGoogle Scholar
  17. IPCC (2001a) Climate Change 2001, the Scientific Basis, Chap.8. Model Evaluation. Accessed 12 Feb 2014
  18. IPCC (2001b) Working Group II: Impacts, Adaptation and Vulnerability. Accessed 17 Mar 2014
  19. IPCC (2007) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, By Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt M, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi: 10.1175/1520-0477(1996)077 CrossRefGoogle Scholar
  21. Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc 74(6):1007–1023. doi: 10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2 CrossRefGoogle Scholar
  22. Khan MS, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods. J Hydrol 319(1–4):357–382. doi: 10.1016/j.jhydrol.2005.06.035 CrossRefGoogle Scholar
  23. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu V, Kousky M, van den Dool H, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalysis. Bull Am Meteorol Soc 82(2):247–267. doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 CrossRefGoogle Scholar
  24. Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison. Geophys Res Res 34, L05715. doi: 10.1029/2006GL028726 Google Scholar
  25. Mendes D, Marengo JA (2010) Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios. Theor Appl Climatol 100(3–4):413–421. doi: 10.1007/s00704-009-0193-y CrossRefGoogle Scholar
  26. Plummer N, Lin Z, Torok S (1995) Trends in the diurnal temperature range over Australia since 1951. Atmos Res 37(1–3):79–86. doi: 10.1016/0169-8095(94)00070-T CrossRefGoogle Scholar
  27. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley centre climate model: HadAM3. Clim Dyn 16(2–3):123–146. doi: 10.1007/s003820050009 CrossRefGoogle Scholar
  28. Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Clim Chan 93(1–2):177–195. doi: 10.1007/s10584-008-9464-3 CrossRefGoogle Scholar
  29. Przybylak (1999) Influence of CLD on extreme air temperatures and diurnal temperature range in the Arctic in 1951–1990. Polish polar Res 20(2):149–173Google Scholar
  30. Raje D, Mujumdar PP (2011) A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrol Process 25(23):3575–3589. doi: 10.1002/hyp.8083 CrossRefGoogle Scholar
  31. Schoof JT, Pryor SC (2001) Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. Int J Climatol 21(7):773–790. doi: 10.1002/joc.655 CrossRefGoogle Scholar
  32. Stenchikov GL, Robock A (1995) Diurnal asymmetry of climatic response to increased CO2 and aerosols: forcings and feedbacks. J Geophys Res 100(D12):26211–26227. doi: 10.1029/95JD02166 CrossRefGoogle Scholar
  33. Tatsumi K, Oizumi T, Yamashiki Y (2014) Assessment of future precipitation indices in the Shikoku region using a statistical downscaling model. (Published online). doi: 10.1007/s00477-014-0847-x
  34. Wetterhall F, Bárdossy A, Chen DL, Halldin S, Xu CY (2006) Daily precipitation-downscaling techniques in three Chinese regions. Water Resour Res 42(11), W11423. doi: 10.1029/2005WR004573 Google Scholar
  35. Weber RO, Talkner P, Auer I, Böhm R, Gajić-čapka M, Zaninović K, Brázdil R, Faško P (1997) 20th-century changes of temperature in the mountain regions of central Europe. Clim Change 36(3–4):327–344. doi: 10.1023/A:1005378702066 CrossRefGoogle Scholar
  36. Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:145–157. doi: 10.1016/S1364-8152(01)00060-3 CrossRefGoogle Scholar
  37. Wilby RL, Dawson CW (2007) SDSM 4.2 —A decision support tool for the assessment of regional climate change impacts. Accessed 12 May 2013
  38. Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resour Res 42(2):W0419. doi: 10.1029/2005WR004065 Google Scholar
  39. Wilby RL, Wigley TML, Conway D, Jones PD, Hewiston BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34(11):2995–3008. doi: 10.1029/98WR02577 CrossRefGoogle Scholar
  40. Wise EK (2009) Climate-based sensitivity of air quality to climate change scenarios for the southwestern United States. Int J Climatol 29(1):87–97. doi: 10.1002/joc.1713 CrossRefGoogle Scholar
  41. Zheng X, Basher RE, Thompson CS (1997) Trend detection in regional-mean temperature series: maximum, minimum, mean, diurnal range, and SST. J Clim 10(2):317–326. doi: 10.1175/1520-0442(1997)010<0317:TDIRMT>2.0.CO;2 CrossRefGoogle Scholar
  42. Zhou L, Dickinson RE, Tian Y, Vose RS, Dai Y (2007) Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: application to the Sahel. Proc Natl Acad Sci U S A 104(46):17937–17942. doi: 10.1073/pnas.0700290104 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Kenichi Tatsumi
    • 1
    Email author
  • Tsutao Oizumi
    • 2
  • Yosuke Yamashiki
    • 3
  1. 1.Department of Environmental and Agricultural EngineeringTokyo University of Agriculture and TechnologyFuchu CityJapan
  2. 2.Research Institute for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokohama CityJapan
  3. 3.Graduate School of Advanced Integrated Studies in Human SurvivabilityKyoto UniversityKyotoJapan

Personalised recommendations