Urban surface temperature behaviour and heat island effect in a tropical planned city

Abstract

Putrajaya is a model city planned with concepts of a “city in the garden” and an “intelligent city” in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Adebayo YR (1991) “Heat island” in a humid tropical city and its relationship with potential evaporation. Theor Appl Climatol 43(3):137–147. doi:10.1007/bf00867471

    Article  Google Scholar 

  2. Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Article  Google Scholar 

  3. Ali-Toudert F, Mayer H (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build Environ 41(2):94–108. doi:10.1016/j.buildenv.2005.01.013

    Article  Google Scholar 

  4. Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81(6):742–754. doi:10.1016/j.solener.2006.10.007

    Article  Google Scholar 

  5. Ali-Toudert F, Djenane M, Bensalem R, Mayer H (2005) Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim Res 28(3):243–256. doi:10.3354/cr028243

    Article  Google Scholar 

  6. Andreou E, Axarli K (2012) Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew Energy 43:354–363. doi:10.1016/j.renene.2011.11.038

    Article  Google Scholar 

  7. Armson D, Stringer P, Ennos AR (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green 11(3):245–255. doi:10.1016/j.ufug.2012.05.002

    Article  Google Scholar 

  8. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23(1):1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  9. Bourbia F, Awbi HB (2004a) Building cluster and shading in urban canyon for hot dry climate: part 1: air and surface temperature measurements. Renew Energy 29(2):249–262. doi:10.1016/S0960-1481(03)00170-8

    Article  Google Scholar 

  10. Bourbia F, Awbi HB (2004b) Building cluster and shading in urban canyon for hot dry climate: part 2: shading simulations. Renew Energy 29(2):291–301. doi:10.1016/S0960-1481(03)00171-X

    Article  Google Scholar 

  11. Bourbia F, Boucheriba F (2010) Impact of street design on urban microclimate for semi arid climate (Constantine). Renew Energy 35(2):343–347. doi:10.1016/j.renene.2009.07.017

    Article  Google Scholar 

  12. Chudnovsky A, Ben-Dor E, Saaroni H (2004) Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build 36(11):1063–1074. doi:10.1016/j.enbuild.2004.01.052

    Article  Google Scholar 

  13. Emmanuel R, Fernando HJS (2007) Urban heat islands in humid and arid climates: role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research 34(3):241–251. doi:10.3354/cr00694

    Article  Google Scholar 

  14. Giannaros TM, Melas D (2012) Study of the urban heat island in a coastal Mediterranean City: the case study of Thessaloniki, Greece. Atmos Res 118:103–120. doi:10.1016/j.atmosres.2012.06.006

    Article  Google Scholar 

  15. Giannopoulou K, Santamouris M, Livada I, Georgakis C, Caouris Y (2010) The impact of canyon geometry on intra urban and urban: suburban night temperature differences under warm weather conditions. Pure Appl Geophys 167(11):1433–1449. doi:10.1007/s00024-010-0099-8

    Article  Google Scholar 

  16. Haider T, David JS, Hashem A (1992) High-albedo materials for reducing building cooling energy use

  17. Johansson E (2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build Environ 41(10):1326–1338. doi:10.1016/j.buildenv.2005.05.022

    Article  Google Scholar 

  18. Kantzioura A, Kosmopoulos P, Zoras S (2012) Urban surface temperature and microclimate measurements in Thessaloniki. Energy Build 44:63–72

    Article  Google Scholar 

  19. Krüger EL, Minella FO, Rasia F (2011) Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build Environ 46(3):621–634. doi:10.1016/j.buildenv.2010.09.006

    Article  Google Scholar 

  20. Lazzarini M, Marpu PR, Ghedira H (2013) Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sens Environ 130:136–152. doi:10.1016/j.rse.2012.11.007

    Article  Google Scholar 

  21. Makaremi N, Salleh E, Jaafar MZ, GhaffarianHoseini A (2012) Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build Environ 48:7–14. doi:10.1016/j.buildenv.2011.07.024

    Article  Google Scholar 

  22. Masmoudi S, Mazouz S (2004) Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions. Energy Build 36(7):710–719. doi:10.1016/j.enbuild.2004.01.043

    Article  Google Scholar 

  23. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334. doi:10.1007/s00484-006-0061-8

    Article  Google Scholar 

  24. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139. doi:10.1007/s00484-009-0261-0

    Article  Google Scholar 

  25. McPherson EG, Nowak DJ, Rowntree RA, Station NFE (1994) Chicago’s urban forest ecosystem: results of the Chicago Urban Forest Climate Project. U.S. Dept. of Agriculture, Forest Service, Northeastern Forest Experiment Station

  26. Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013) Subsurface urban heat islands in German cities. Sci Total Environ 442:123–133. doi:10.1016/j.scitotenv.2012.10.043

    Article  Google Scholar 

  27. Moser S (2010) Putrajaya: Malaysia’s new federal administrative capital. Cities 27(4):285–297. doi:10.1016/j.cities.2009.11.002

    Article  Google Scholar 

  28. Mulligan K, Elliott SJ, Schuster-Wallace C (2012) The place of health and the health of place: dengue fever and urban governance in Putrajaya, Malaysia. Health Place 18(3):613–620

    Article  Google Scholar 

  29. Nakamura Y, Oke TR (1988) Wind, temperature and stability conditions in an east-west oriented urban canyon. Atmos Environ (1967) 22(12):2691–2700. doi:10.1016/0004-6981(88)90437-4

    Article  Google Scholar 

  30. Ng E, Cheng V (2012) Urban human thermal comfort in hot and humid Hong Kong. Energy Build 55:51–65. doi:10.1016/j.enbuild.2011.09.025

    Article  Google Scholar 

  31. Nyuk Hien Wong YC, Chen Y (2009) Tropical urban heat islands: climate. Buildings and Greenery, Taylor & Francis Group

    Google Scholar 

  32. Oke TR (1987) Boundary layer climates. Methuen, London

    Google Scholar 

  33. Prado RTA, Ferreira FL (2005) Measurement of albedo and analysis of its influence the surface temperature of building roof materials. Energy Build 37(4):295–300

    Article  Google Scholar 

  34. Santamouris M (2007) Heat island research in Europe: the state of the art. Adv Building Energy Res 1(1):123–150

    Article  Google Scholar 

  35. Santamouris M (2013) Environmental design of urban buildings: an integrated approach. Taylor & Francis, London

    Google Scholar 

  36. Santamouris M, Asimakopoulos DN (2001) Energy and climate in the urban built environment, vol 1. James & James, London

    Google Scholar 

  37. Shahidan MF, Jones PJ, Gwilliam J, Salleh E (2012) An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials. Build Environ 58:245–257. doi:10.1016/j.buildenv.2012.07.012

    Article  Google Scholar 

  38. Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energy Build 31(3):221–235

    Article  Google Scholar 

  39. Swaid H, Hoffman ME (1990) Prediction of urban air temperature variations using the analytical CTTC model. Energy Build 14(4):313–324

    Article  Google Scholar 

  40. Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25(2):99–103. doi:10.1016/S0378-7788(96)00999-1

    Article  Google Scholar 

  41. Takebayashi H, Moriyama M (2012) Relationships between the properties of an urban street canyon and its radiant environment: introduction of appropriate urban heat island mitigation technologies. Sol Energy 86(9):2255–2262

    Article  Google Scholar 

  42. Wilmers F (1990) Effects of vegetation on urban climate and buildings. Energy Build 15(3–4):507–514

    Article  Google Scholar 

  43. Wong NH, Chen Y (2009) Tropical urban heat islands: climate. Taylor & Francis, Buildings and Greenery

    Google Scholar 

  44. Xi T, Li Q, Mochida A, Meng Q (2012) Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Build Environ 52:162–170. doi:10.1016/j.buildenv.2011.11.006

    Article  Google Scholar 

  45. Yang L, Li Y (2009) City ventilation of Hong Kong at no-wind conditions. Atmos Environ 43(19):3111–3121

    Article  Google Scholar 

  46. Zhang XX, Wu PF, Chen B (2010) Relationship between vegetation greenness and urban heat island effect in Beijing City of China. Procedia Environ Sci 2:1438–1450. doi:10.1016/j.proenv.2010.10.157

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Institute Sultan Iskandar (ISI) and the staff for funding this project and for their valuable and support rendered throughout the research progress. The authors wish to acknowledge the Perbadanan Putrajaya for giving the permission to collect the data. Many thanks also go to Tariq Gaber for helping us in collecting data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adeb Qaid Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, A.Q., Ossen, D.R., Jamei, E. et al. Urban surface temperature behaviour and heat island effect in a tropical planned city. Theor Appl Climatol 119, 493–514 (2015). https://doi.org/10.1007/s00704-014-1122-2

Download citation

Keywords

  • Surface Temperature
  • Solar Radiation
  • Urban Heat Island
  • Street Canyon
  • High Surface Temperature