Simulating the influence of the South Atlantic dipole on the South Atlantic convergence zone during neutral ENSO

Abstract

The South Atlantic Convergence Zone (SACZ) is an intrinsic characteristic of the South American Summer Monsoon. In a recent study, we verified that the main mode of coupled variability over the South Atlantic (South Atlantic Dipole (SAD)) plays a role in modulating the position of extratropical cyclones that affect the SACZ precipitation. In this study, we perform numerical experiments to further investigate the mechanisms between SAD and the SACZ. Numerical experiments forced with prescribed SST anomalies showed that, even though the Atlantic SST affects the position of the cyclone associated with the SACZ, the atmospheric response and precipitation patterns over land are opposed to the observations. On the other hand, experiments forced with prescribed anomalous driving fields showed that the atmospheric component of SAD plays a significant role for the right position and intensity of precipitation associated with the SACZ. SAD negative anomalies provide the low-level and upper-level atmospheric support for the intensification of the cyclone at surface and for the increase in precipitation over the land portion of the SACZ. Therefore, the numerical experiments suggest that, during El Niño Southern Oscillation neutral conditions, the SACZ precipitation variability associated with SAD is largely dependent on the atmospheric variability rather than the underlying SST.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean–atmosphere feedback in the South Atlantic Convergence Zone. Geophys Res Lett 34, L18809. doi:10.1029/2007GL030401

    Article  Google Scholar 

  2. Alonso MF, Longo KM, Freitas SR et al (2010) An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmos Environ 44:5072–5083. doi:10.1016/j.atmosenv.2010.09.013

    Article  Google Scholar 

  3. Anderson TW, Finn JD (1996) The new statistical analysis of data. Springer-Verlag, New York, p 712

    Google Scholar 

  4. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J Atmos Sci 31:674–701. doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2

    Article  Google Scholar 

  5. Barreiro M (2009) Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim Dyn 35:1493–1508. doi:10.1007/s00382-009-0666-9

    Article  Google Scholar 

  6. Barreiro M, Chang P, Saravanan R (2002) Variability of the South Atlantic Convergence Zone simulated by an atmospheric general circulation model. J Climate 15:745–763. doi:10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2

    Article  Google Scholar 

  7. Barreiro M, Chang P, Saravanan R (2005) Simulated precipitation response to SST forcing and potential predictability in the region of the South Atlantic convergence zone. Clim Dyn 24:105–114. doi:10.1007/s00382-004-0487-9

    Article  Google Scholar 

  8. Bombardi RJ, Carvalho LMV (2011) The South Atlantic dipole and variations in the characteristics of the South American Monsoon in the WCRP-CMIP3 multi-model simulations. Clim Dyn 36:2091–2102. doi:10.1007/s00382-010-0836-9

    Article  Google Scholar 

  9. Bombardi RJ, Carvalho LMV, Jones C, Reboita MS (2013) Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Clim Dyn. doi:10.1007/s00382-013-1832-7

    Google Scholar 

  10. Bookhagen B, Strecker MR (2010) Modern Andean rainfall variation during ENSO cycles and its impact on the Amazon drainage basin. Diversity. In: Hoorn C, Wesselingh FP (eds) Amaz. Landsc. Species Evol. A look into past. Wiley-Blackwell Publishing Ltd, Oxford, UK, pp 223–241

    Google Scholar 

  11. Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27:767–770. doi:10.1029/1999GL010910

    Article  Google Scholar 

  12. Browning KA (1986) Conceptual models of precipitation systems. Weather Forecast 1:23–41. doi:10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2

    Article  Google Scholar 

  13. Carvalho LMV, Jones C, Silva Dias MAF (2002a) Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. J Geophys Res 107:8042. doi:10.1029/2001JD000745

    Google Scholar 

  14. Carvalho LM V, Jones C, Liebmann B (2002b) Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic Convergence Zone. J Climate 15:2377–2394. doi:10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2

    Article  Google Scholar 

  15. Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Climate 17:88–108. doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

    Google Scholar 

  16. Carvalho LMV, Jones C, Posadas AND et al (2012) Precipitation characteristics of the South American monsoon system derived from multiple datasets. J Climate 25:4600–4620. doi:10.1175/JCLI-D-11-00335.1

    Article  Google Scholar 

  17. Chaves RR, Nobre P (2004) Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic Convergence Zone. Geophys Res Lett 31, L03204. doi:10.1029/2003GL018647

    Article  Google Scholar 

  18. Chen C, Cotton WR (1983) A one-dimensional simulation of the stratocumulus-capped mixed layer. Boundary-Layer Meteorol 25:289–321. doi:10.1007/BF00119541

    Article  Google Scholar 

  19. Chen M, Shi W, Xie P et al (2008) Assessing objective techniques for gauge-based analyses of global daily precipitation. J Geophys Res 113, D04110. doi:10.1029/2007JD009132

    Google Scholar 

  20. Chou C, Neelin JD (2001) Mechanisms limiting the southward extent of the South American Summer Monsoon. Geophys Res Lett 28:2433–2436. doi:10.1029/2000GL012138

    Article  Google Scholar 

  21. Cotton WR, Pielke RA Sr, Walko RL et al (2003) RAMS 2001: current status and future directions. Meteorol Atmos Phys 82:5–29. doi:10.1007/s00703-001-0584-9

    Article  Google Scholar 

  22. Cuadra SV, Da Rocha RP (2007) Sensitivity of regional climatic simulation over Southeastern South America to SST specification during austral summer. Int J Climatol 27:793–804. doi:10.1002/joc.1431

    Article  Google Scholar 

  23. de O Cardoso A, Silva Dias PL (2004) Atlantic and Pacific variability and temperature during the winter season in Sao Paulo City. Rev Bras Meteorol 19:113–122

    Google Scholar 

  24. Freitas SR, Longo KM, Silva Dias MAF et al (2009) The coupled aerosol and tracer transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—part 1: model description and evaluation. Atmos Chem Phys 9:2843–2861. doi:10.5194/acp-9-2843-2009

    Article  Google Scholar 

  25. Gevaerd R, Freitas S (2006) Operational soil moisture estimate for initialization of numerical weather forecast models—part I: model description and validation. Rev Bras Meteorol 21:1–15

    Google Scholar 

  26. Giorgi F, Bi X (2000) A study of internal variability of a regional climate model. J Geophys Res 105:29503–29521. doi:10.1029/2000JD900269

    Article  Google Scholar 

  27. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787. doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

    Article  Google Scholar 

  28. Haarsma RJ (2003) Atmospheric response to South Atlantic SST dipole. Geophys Res Lett 30:1864. doi:10.1029/2003GL017829

    Article  Google Scholar 

  29. Haarsma RJ, Campos EJD, Hazeleger W et al (2005) Dominant modes of variability in the South Atlantic: a study with a hierarchy of ocean–atmosphere models. J Climate 18:1719–1735. doi:10.1175/JCLI3370.1

    Article  Google Scholar 

  30. Hallak R, Silva Dias MAF (2000) 1827 ESTUDO DIAGNÓSTICO DE UM VÓRTICE DE AR FRIO—PARTE I: ASPECTOS DE GRANDE ESCALA. XI Congr. Bras. Meteorol. pp 1682–1691

  31. Herdies DL (2002) Moisture budget of the bimodal pattern of the summer circulation over South America. J Geophys Res 107:8075. doi:10.1029/2001JD000997

    Article  Google Scholar 

  32. Higgins RW, Shi W, Yarosh E, Joyce R (2000) Improved United States precipitation quality control system and analysis. NCEP/Climate Predict Cent atlas no 7:40

    Google Scholar 

  33. Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  34. Jones C, Carvalho LMV (2002) Active and break phases in the South American Monsoon System. J Climate 15:905–914. doi:10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2

    Article  Google Scholar 

  35. Jorgetti T (2008) The South Atlantic Convergence Zone and Oceanic Processes in the Atlantic and the Pacific. Dissertation, University of Sao Paulo. 169. Available at University of Sao Paulo

  36. Jorgetti T, SIlva Dias PL, Freitas ED (2013) The relationship between South Atlantic SST and SACZ intensity and positioning. Theor. Appl. Climatol

  37. Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503. doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

    Article  Google Scholar 

  38. Kodama Y (1992) Large-scale common features of subtropical precipitation zones (the baiu Frontal Zone, the SPCZ, and the SACZ) part I: characteristics of subtropical frontal zones. J Meteorol Soc Japan 70:813–835

    Google Scholar 

  39. Kodama Y (1993) Large-scale common features of subtropical precipitation zones (the baiu Frontal Zone, the SPCZ, and the SACZ) part II: conditions of the circulations for generating the STCZs. J Meteorol Soc Japan 71:581–610

    Google Scholar 

  40. Kodama Y-M (1999) Roles of the atmospheric heat sources in maintaining the subtropical convergence zones – an aquaplanet GCM study. J Atmos Sci 56:4032–4049

    Google Scholar 

  41. Kummerow C, Barnes W, Kozu T et al (1998) The Tropical Rainfall Measuring Mission (TRMM) sensor package. J Atmos Oceanic Tech 15:809–817. doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2

    Article  Google Scholar 

  42. Kummerow C, Simpson J, Thiele O et al (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982. doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2

    Article  Google Scholar 

  43. Liebmann B, Kiladis GN, Marengo J et al (1999) Submonthly convective variability over South America and the South Atlantic Convergence Zone. J Climate 12:1877–1891. doi:10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2

    Article  Google Scholar 

  44. Liebmann B, Jones C, Carvalho LMV (2001) Interannual variability of daily extreme precipitation events in the state of São Paulo, Brazil. J Climate 14:208–218. doi:10.1175/1520-0442(2001)014<0208:IVODEP>2.0.CO;2

    Article  Google Scholar 

  45. Liebmann B, Kiladis GN, Vera CS et al (2004) Subseasonal variations of Rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic Convergence Zone. J Climate 17:3829–3842. doi:10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2

    Article  Google Scholar 

  46. Longo KM, Freitas SR, Andreae MO et al (2010) The coupled aerosol and tracer transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—part 2: model sensitivity to the biomass burning inventories. Atmos Chem Phys 10:5785–5795. doi:10.5194/acp-10-5785-2010

    Article  Google Scholar 

  47. Marsal D (1987) Statistics for geoscientists, 1st ed. 176

  48. Morioka Y, Tozuka T, Yamagata T (2011) On the growth and decay of the subtropical dipole mode in the South Atlantic. J Climate 24:5538–5554. doi:10.1175/2011JCLI4010.1

    Article  Google Scholar 

  49. Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675. doi:10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2

    Article  Google Scholar 

  50. Muza MN, Carvalho LMV, Jones C, Liebmann B (2009) Intraseasonal and interannual variability of extreme dry and wet events over southeastern South America and the subtropical Atlantic during austral summer. J Climate 22:1682–1699. doi:10.1175/2008JCLI2257.1

    Article  Google Scholar 

  51. Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev 115:3–12. doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2

    Article  Google Scholar 

  52. Nnamchi HC, Li J, Anyadike RNC (2011) Does a dipole mode really exist in the South Atlantic Ocean? J Geophys Res 116, D15104. doi:10.1029/2010JD015579

    Article  Google Scholar 

  53. Pielke RA, Cotton WR, Walko RL et al (1992) A comprehensive meteorological modeling system—RAMS. Meteorol Atmos Phys 49:69–91. doi:10.1007/BF01025401

    Article  Google Scholar 

  54. Reboita MS (2008) Extratropical cyclones over the South Atlantic Ocean: climatic simulation and sensibility experiments. Dissertation, University of Sao Paulo. 294. Available at University of Sao Paulo

  55. Reynolds RW, Rayner NA, Smith TM et al (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2

    Article  Google Scholar 

  56. Reynolds RW, Smith TM, Liu C et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Climate 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  57. Rickenbach TM (2002) Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J Geophys Res 107:8040. doi:10.1029/2000JD000263

    Article  Google Scholar 

  58. Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Climate 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  59. Robertson AW, Mechoso CR (2000) Interannual and interdecadal variability of the South Atlantic Convergence Zone. Mon Weather Rev 128:2947–2957. doi:10.1175/1520-0493(2000)128<2947:IAIVOT>2.0.CO;2

    Article  Google Scholar 

  60. Robertson AW, Farrara JD, Mechoso CR (2003) Simulations of the atmospheric response to South Atlantic Sea Surface Temperature anomalies. J Climate 16:2540–2551. doi:10.1175/1520-0442(2003)016<2540:SOTART>2.0.CO;2

    Article  Google Scholar 

  61. Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Climate 14:3192–3211

    Article  Google Scholar 

  62. Santos AF, Freitas SR, de Mattos JGZ et al (2013) Using the Firefly optimization method to weight an ensemble of rainfall forecasts from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS). Adv Geosci 35:123–136. doi:10.5194/adgeo-35-123-2013

    Article  Google Scholar 

  63. Sterl A, Hazeleger W (2003) Coupled variability and air–sea interaction in the South Atlantic Ocean. Clim Dyn 21:559–571. doi:10.1007/s00382-003-0348-y

    Article  Google Scholar 

  64. Sutton R, Mathieu P-P (2002) Response of the atmosphere–ocean mixed-layer system to anomalous ocean heat-flux convergence. Q J Roy Meteorol Soc 128:1259–1275. doi:10.1256/003590002320373283

    Article  Google Scholar 

  65. Taschetto AS, Wainer I (2008) The impact of the subtropical South Atlantic SST on South American precipitation. Ann Geophys 26:3457–3476. doi:10.5194/angeo-26-3457-2008

    Article  Google Scholar 

  66. Tomaziello ACN, Gandu AW (2013) Impacto da temperatura da superfície do mar na simulação da Zona de Convergência do Atlântico Sul. Rev Bras Meteorol 28:291–304. doi:10.1590/S0102-77862013000300006

    Article  Google Scholar 

  67. Uvo CB, Repelli CA, Zebiak SE, Kushnir Y (1998) The relationships between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J Climate 11:551–562. doi:10.1175/1520-0442(1998)011<0551:TRBTPA>2.0.CO;2

    Article  Google Scholar 

  68. Venegas SA, Mysak LA, Straub DN (1997) Atmosphere–ocean coupled variability in the South Atlantic. J Climate 10:2904–2920. doi:10.1175/1520-0442(1997)010<2904:AOCVIT>2.0.CO;2

    Article  Google Scholar 

  69. Vera C, Higgins W, Amador J et al (2006) Toward a unified view of the American monsoon systems. J Climate 19:4977–5000. doi:10.1175/JCLI3896.1

    Article  Google Scholar 

  70. Walko RL, Band LE, Baron J et al (2000) Coupled atmosphere–biophysics–hydrology models for environmental modeling. J Appl Meteorol 39:931–944. doi:10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2

    Article  Google Scholar 

  71. Weaver CP (2002) Sensitivity of simulated mesoscale atmospheric circulations resulting from landscape heterogeneity to aspects of model configuration. J Geophys Res 107:8041. doi:10.1029/2001JD000376

    Article  Google Scholar 

  72. Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Climate 11:1020–1040. doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgment

We thank the anonymous reviewers for their valuable comments and suggestions for the improvement of this manuscript. We thank the support of NOAA Climate Program Office (NA07OAR4310211 and NA10OAR4310170). This research was conducted under the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), sub-contract with the International Potato Center (SB120184). L. Carvalho thanks FAPESP (2008/58101-9) and CNPq [555768/2010-4]. We thank NASA for making available the MERRA reanalysis, NOAA for making available the SST data, and ANA for making available the precipitation station data. We also thank Dr. Brant Liebmann and Dr. David Allured for providing the precipitation station data. R. Bombardi thanks Dr. Saulo Freitas and Dr. Edmilson Dias de Freitas for their help with the BRAMS model.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo J. Bombardi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bombardi, R.J., Carvalho, L.M.V. & Jones, C. Simulating the influence of the South Atlantic dipole on the South Atlantic convergence zone during neutral ENSO. Theor Appl Climatol 118, 251–269 (2014). https://doi.org/10.1007/s00704-013-1056-0

Download citation

Keywords

  • Cyclone
  • Advance Very High Resolution Radiometer
  • Advance Very High Resolution Radiometer
  • South Atlantic Convergence Zone
  • Moist Static Energy