Abstract
This paper analyzes changes in areas under droughts over the past three decades and alters our understanding of how amplitude and frequency of droughts differ in the Southern Hemisphere (SH) and Northern Hemisphere (NH). Unlike most previous global-scale studies that have been based on climate models, this study is based on satellite gauge-adjusted precipitation observations. Here, we show that droughts in terms of both amplitude and frequency are more variable over land in the SH than in the NH. The results reveal no significant trend in the areas under drought over land in the past three decades. However, after investigating land in the NH and the SH separately, the results exhibit a significant positive trend in the area under drought over land in the SH, while no significant trend is observed over land in the NH. We investigate the spatial patterns of the wetness and dryness over the past three decades, and we show that several regions, such as the southwestern United States, Texas, parts of the Amazon, the Horn of Africa, northern India, and parts of the Mediterranean region, exhibit a significant drying trend. The global trend maps indicate that central Africa, parts of southwest Asia (e.g., Thailand, Taiwan), Central America, northern Australia, and parts of eastern Europe show a wetting trend during the same time span. The results of this satellite-based study disagree with several model-based studies which indicate that droughts have been increasing over land. On the other hand, our findings concur with some of the observation-based studies.
This is a preview of subscription content, access via your institution.



References
Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979). J Hydrometeorol 4:1147–1167
AghaKouchak A, Nakhjiri N (2012) A near real-time satellite-based global drought climate data record. Environ Res Lett 7(4):044037. doi:10.1088/1748-9326/7/4/044037
AghaKouchak A, Nasrollahi N, Habib E (2009) Accounting for uncertainties of the TRMM satellite estimates. Remote Sens 1(3):606–619
AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (2012a) Extremes in a changing climate. Springer, Dordrecht
AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012b) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39(9):L09406
AghaKouchak A, Hao Z, Nakhjiri N (2013) The global drought monitoring and predication system. Tech rep, University of California, Irvine, version 1. http://drought.eng.uci.edu/. Accessed 25 Sept 2013
Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Ambenje P, Rupa Kumar K, Revadekar J, Griffiths G (2006) Global observed changes in daily climate extremes of temperature. J Geophys Res 111:D05109
Anderson MC, Hain C, Wardlow B, Pimstein A, Mecikalski JR, Kustas WP (2011) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J Clim 24(8):2025–2044
Andreadis K, Clark E, Wood A, Hamlet A, Lettenmaier D (2005) Twentieth-century drought in the conterminous United States. J Hydrometeorol 6(6):985–1001
Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci USA 107(50):21271–21276
Coelho CAS, Goddard L (2009) El Niño-induced tropical droughts in climate change projections. J Clim 22(23):6456–6476
Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65
Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Chang 2:52–58. doi:10.1038/nclimate1633
Dirmeyer P, Gao X, Gao Z, Oki T, Hanasaki M (2006) The Global Soil Wetness Project (GSWP-2). Bull Am Meteorol Soc 87:1381–1397
Easterling D (2012) Global data sets for analysis of climate extremes. In: AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a changing climate: detection, analysis and uncertainty. Springer, New York. doi:10.1007/978-94-007-4479-012
Edwards D (1997) Characteristics of 20th century drought in the United States at multiple time scales. Tech rep, Colorado State University, Fort Collins, Colorado
Fatichi S (2009) Mann-Kendall test. Tech rep, Dipartimento Ingegneria Civile e Ambientale, Universita degli Studi di Firenze
Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Klein Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212
Gebremichael M, Krajewski WF, Morrissey M, Langerud D, Huffman GJ, Adler R (2003) Error uncertainty analysis of GPCP monthly rainfall products: a data-based simulation study. J Appl Meteorol 42(12):1837–1848
Hao Z, AghaKouchak A (2013a) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12–18. doi:10.1016/j.advwatres.2013.03.009
Hao Z, AghaKouchak APT (2013b) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett. doi:10.1088/1748-9326/8/3/034014
Hayes M, Svoboda M, Wilhite D, Vanyarkho O (1999) Monitoring the 1996 drought using the Standardized Precipitation Index. Bull Am Meteorol Soc 80:429–438
Helsel D, Hirsh R (2010) Trend analysis, Tech rep. In: Helsel DR, Hirsh RM (eds) Statistical methods in water resources. U.S. Geological Survey, Reston
Hong Y, Hsu K, Moradkhani H, Sorooshian S (2006) Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour Res 42(8):w08421
Hsu K, Gao X, Sorooshian S, Gupta H (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190
Huffman G, Adler R, Bolvin D, Nelkin E (2003) Estimating uncertainty in GPCP and TRMM multi-satellite precipitation estimates. In: IUGG XXIII: state of the planet: frontiers and challenges, Sapporo, Japan, International Union of Geodesy and Geophysics, CD-ROM, JSM18
Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K, Stocker E, Wolff D (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55
Janowiak J, Gruber A, Curtis S, Huffman G, Adler R, Xie P (2001) Evaluation and comparison of the CMAP and GPCP oceanic precipitation analyses. WCRP. In: SCOR workshop on intercomparison and validation of ocean–atmosphere flux fields, Bolger Center, Potomac, MD (Washington, DC area)
Kendall M (1976) Rank correlation methods, 4th edn. Griffin, London
Kirono DGC, Kent DM (2011) Assessment of rainfall and potential evaporation from global climate models and its implications for Australian regional drought projection. Int J Climatol 31(9):1295–1308
Mann H (1945) Nonparametric tests against trend. Econometrica 13:245–259
Marengo JA, Nobre CA, Tomasella J, Oyama MD, De Oliveira GS, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516
Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703
McKee T, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales Proceedings of the 8th conference of applied climatology, 17–22 Jan 1993. American Meteorological Society, Anaheim, pp 179–184
Mehran A, AghaKouchak A (2013) Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol Process. doi:10.1002/hyp.9779
Mo K (2008) Model based drought indices over the United States. J Hydrometeorol 9:1212–1230
Robock A, Luo L, Wood E, Wen F, Mitchell K, Houser P, Schaake J, Lohmann D, Cosgrove B, Sheffield J, Duan Q, Higgins R, Pinker R, Tarpley J, Basara J, Crawford K (2004) Evaluation of the north American land data assimilation system over the southern Great Plains during the warm season. J Geophy Res: 109
Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth 34(10–12):596–605
Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105
Sheffield J, Goteti G, Wen F, Wood E (2004) A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos 109(D24)
Sheffield J, Wood E, Roderick M (2012) Little change in global drought over the past 60 years. Nat 491(7424):435–438
Shiau J (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815
Shukla S, Wood A (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35(2):l02405
Sorooshian S, Hsu K, Gao X, Gupta H, Imam B, Braithwaite D (2000) Evolution of the PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046
Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bull Am Meteorol Soc 92(10):1353–1357
Tian Y, Peters-Lidard C, Eylander J, Joyce R, Huffman G, Adler R, Hsu K, Turk F, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114:D24101
Trenberth K (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Chang 42(1):327–339
Trenberth K (2001) Climate variability and global warming. Sci 293(5527):48–49
Turk FJ, Arkin P, Ebert EE, Sapiano MRP (2008) Evaluating high-resolution precipitation products. Bull Am Meteorol Soc 89(12):1911–1916
Wang D, Hejazi M, Cai X, Valocchi AJ (2011) Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour Res 47:W09527
Wardlow B, Anderson M, Verdin J (2012) Remote sensing of drought. CRC, Boca Raton
WCRP (2010) A WCRP white paper on drought predictability and prediction in a changing climate: assessing current predictive knowledge and capabilities, user requirements and research priorities. Tech rep, World Climate Research Programme
Wehner M (2012) Methods of projecting future changes in extremes. In: AghaKouchak A, Easterling D, Hsu K, Schubert S, Sorooshian S (eds) Extremes in a changing climate: detection, analysis and uncertainty. Springer, New York. doi:10.1007/978-94-007-4479-08
Wilhite D, Glantz M (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10:111–120
WMO (2009) Inter-regional workshop on indices and early warning systems for drought. Lincoln, Nebraska, USA, 8–11 December 2009, World Meteorological Organization
Yoon J-H, Mo K, Wood EF (2012) Dynamic-model-based seasonal prediction of meteorological drought over the contiguous United States. J Hydrometeorol 13(2):463–482
Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1):254–271
Acknowledgments
The authors would like to thank the editor and reviewers for their thoughtful comments and suggestions on an earlier draft of this paper. This study is supported by the National Science Foundation (NSF, award no. EAR-1316536) and the United States Bureau of Reclamation (USBR, award no. R11AP81451).
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Appendix Estimating the Standardized Precipitation Index (SPI) involves describing frequency distribution of precipitation using a gamma probability density function:
where α and β are the shape and scale parameters, respectively. In Eq. 5, x denotes positive precipitation amounts and Γ(α) is the gamma function. The parameters α and β can be estimated using the maximum likelihood method as (Edwards 1997):
and
where n is the number of observations. The estimated parameters will then be used to derive the cumulative probability of observed precipitation values for the given month and time scale (e.g., 6 months) over each pixel:
Assuming \(t=\frac {x}{\beta }\), Eq. 8 reduces to the so-called incomplete cumulative gamma distribution function (Edwards 1997):
The above equation is not valid for x = 0 (zero precipitation values). To account for zeros, the complete cumulative probability distribution, H(x), can be written as:
where q and 1 − q denote the probabilities of zero and nonzero precipitations, respectively. The SPI is then derived by transforming the cumulative probability (Eq. 10) to the standard normal distribution with a mean of 0 and variance of 1 (McKee et al. 1993).
Rights and permissions
About this article
Cite this article
Damberg, L., AghaKouchak, A. Global trends and patterns of drought from space. Theor Appl Climatol 117, 441–448 (2014). https://doi.org/10.1007/s00704-013-1019-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-013-1019-5
Keywords
- Northern Hemisphere
- Southern Hemisphere
- Standardize Precipitation Index
- Extreme Drought
- Palmer Drought Severity Index