Theoretical and Applied Climatology

, Volume 117, Issue 1–2, pp 317–329 | Cite as

Probabilistic correction of RCM precipitation in the Basque Country (Northern Spain)

  • Robert MonjoEmail author
  • Guillem Chust
  • Vicente Caselles
Original Paper


A parametric quantile–quantile transformation is used to correct the systematic errors of precipitation projected by regional climate models. For this purpose, we used two new probability distributions: modified versions of the Gumbel and log-logistic distributions, which fit to the precipitation of both wet and dry days. With these tools, the daily probability distribution of seven regional climate models was corrected: Aladin-ARPEGE, CLM-HadCM3Q0, HIRHAM-HadCM3Q0, HIRHAM-BCM, RECMO-ECHAM5-rt3, REMO-ECHAM-rt3 and PROMES-HadCM3Q0. The implemented method presents an error less than 5 % in the simulation of the average precipitation and 1 % in the simulation of the number of dry days. For the study area, an intensification of daily and subdaily precipitation is expected under the A1B scenario throughout the 21st century. This intensification is interpreted as a consequence of the process of ‘mediterraneanisation’ of the most southern ocean climate.


Return Period Extreme Precipitation Basque Country Statistical Downscaling Quantile Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is the last part of the doctoral thesis written at the Department of Earth Physics of the University of Valencia. This work is supported by the Department of Environment, Regional Planning, Agriculture and Fisheries of the Basque Government (K-Egokitzen II project, Etortek Funding Program). Likewise, we acknowledge the State Meteorological Agency of Spain (AEMET) and Hydrographics Confederations of Ebro (CHE) and Júcar (CHJ) for providing the data for this study. In particular, we thank José Ángel Nuñez, head of the Department of Climatology AEMET delegation in Valencia, and Margarita Martín, AEMET delegate in the Basque Country, for their helpful comments. Finally, it is fair to acknowledge the support of Maddalen Mendizabal (Tecnalia) especially for raising the issue of probability of daily precipitation.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Cont 19:716–723CrossRefGoogle Scholar
  2. Alves M, Verdière AC (1999) Instability dynamics of a subtropical jet and applications to the Azores front-current system: eddy-driven mean flow. J Phys Oceanogr 29:837–864CrossRefGoogle Scholar
  3. Begueria S (2005) Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value. J Hydrol 303:215–230CrossRefGoogle Scholar
  4. Benestad RE (2010) Downscaling precipitation extremes. Correction of analog models through PDF predictions. Theor Appl Climatol 100:1–21CrossRefGoogle Scholar
  5. Capel-Molina JJ (2000) El clima de la Península Ibérica. Ariel Geografia, BarcelonaGoogle Scholar
  6. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisäinen J, Rinke A, Sarr A, Whetton YP (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change (2007): The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  7. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26CrossRefGoogle Scholar
  8. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, De Castro M, Van Den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Chang 81:53–70CrossRefGoogle Scholar
  9. Elshamy ME, Seierstad IA, Sorteberg A (2009) Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol Earth Syst Sci 13:551–565CrossRefGoogle Scholar
  10. Formayer H, Haas P (2010) Correction of RegCM3 model output data using a rank matching approach applied on various meteorological parameters. In Deliverable D3.2 RCM output localization methods (BOKU contribution of the FP 6 CECILIA project in Accessed 28 June 2012
  11. Fowler HJ, Cooley D, Sain SR, Thurston M (2010) Detecting change in UK extreme precipitation using results from the BBC climate change experiment. Extremes 13:241–267. doi: 10.1007/s10687-010-0101-y CrossRefGoogle Scholar
  12. Furrer R, Nychka D, Sain S (2012) fields: tools for spatial data. R package version 6.6.3. Accessed 28 June 2012
  13. Garmendia MI, Pérez C, Rodríguez C, Garmendia J (1989) Factores determinantes de la precipitación anual en la vertiente cantábrica. Acta Samaltina de Ciencias 67:113–117, 3 RefGoogle Scholar
  14. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Chang 57:27–42CrossRefGoogle Scholar
  15. Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall for crop simulation studies. Agr For Met 138:44–53CrossRefGoogle Scholar
  16. Kallache M, Vrac M, Naveau P, Michelangeli P-A (2011) Nonstationary probabilistic downscaling of extreme precipitation. J Geophys Res 116, D05113. doi: 10.1029/2010JD014892 Google Scholar
  17. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Let 34, L06805Google Scholar
  18. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48, RG3003. doi: 10.1029/2009RG000314 CrossRefGoogle Scholar
  19. Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov's distribution. J Stat Software 8/18Google Scholar
  20. Martín-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Clim 24:959–971CrossRefGoogle Scholar
  21. Meehl GA, Stocker TF, Collin WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, CambridgeGoogle Scholar
  22. Mendizabal M, Moncho R, Torp P, Sepúlveda J, Gonzalez-Aparicio I (2013) Uncertainty analysis on flood assessment due to regional climate models. In: Klijn F, Schweckendiek T (eds) Comprehensive flood risk management. CRC, London, 978-0-415-62144-12013Google Scholar
  23. Michelangeli P-A, Vrac M, Loukos H (2009) Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys Res Let 36, L11708. doi: 10.1029/2009GL038401
  24. Moncho R, Belda F, Caselles V (2009a) Climatic study of the exponent n of the IDF curves of the Iberian Peninsula. Tethys 6:3–14Google Scholar
  25. Moncho R, Chust G, Caselles V (2009b) Análisis de la precipitación del País Vasco en el período 1961–2000 mediante reconstrucción espacial. Nimbus 23–24:149–170Google Scholar
  26. Moncho R, Chust G, Caselles V (2012) Alternative model for precipitation probability distribution: application to Spain. Clim Res 51:23–33. doi: 10.3354/cr01055 CrossRefGoogle Scholar
  27. Moreno JM (2005) Principales conclusiones de la evaluación preliminar de los impactos en España por efecto del cambio climático. Oficina Española de Cambio Climático (OECC), Ministerio de Medio Ambiente, MadridGoogle Scholar
  28. Niehörster F, Fast I, Huebener H, Cubasch U (2008) The stream one ENSEMBLES projections of future climate change. Ensembles Technical Report no. 3, 2008Google Scholar
  29. Olcina J (2008) Riesgo de inundaciones y ordenación del territorio en España. Documents d'Anàlisi Geogràfica 51:178–180Google Scholar
  30. Peliz A, Rosa TL, Santos AMP, Pissarra JL (2002) Fronts, jets, and counterflows in the Western Iberian upwelling system. J Mar Syst 35:61–77CrossRefGoogle Scholar
  31. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192CrossRefGoogle Scholar
  32. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Accessed 28 June 2012
  33. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929CrossRefGoogle Scholar
  34. Scholz FW, Stephens MA (1987) K-sample Anderson–Darling tests. J Am Stat Assoc 399:918–924Google Scholar
  35. Sekhon JS (2010) Matching: multivariate and propensity score matching with balance optimization. R package version 4.7-11. Accessed 28 June 2012
  36. Themeβl M-J, Gobiet A, Leuprecht A (2010) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Clim 31:1530–1544. doi: 10.1002/joc.2168 Google Scholar
  37. Turco M, Quintana-Seguí P, Llasat MC, Herrera S, Gutiérrez JM (2011) Testing MOS Precipitation Downscaling for ENSEMBLES Regional Climate Models over Spain. J Geophys Res 116, D18109. doi: 10.1029/2011JD016166
  38. Uriarte A, Collins M, Cearreta A, Bald J, Evans G (2004) Sediment supply and distribution. In: Borja, A., Collins, M. (eds.) Oceanography and marine environment of the Basque Country. Elsevier Oceanogr Ser 70:97–131CrossRefGoogle Scholar
  39. Watterson IG (2005) Simulated changes due to global warming in the variability of precipitation and their interpretation using a gamma-distributed stochastic model. Adv Water Resourc 28:1368–1381CrossRefGoogle Scholar
  40. Watterson IG, Dix MR (2003) Simulated changes due to global warming in daily precipitation means and extremes and their interpretation using the gamma distribution. J Geophys Res 108(D13):4397CrossRefGoogle Scholar
  41. Widmann M, Bretherton CS (2003) Statistical precipitation downscaling over the Northwestern United States using numerically simulated precipitation as a predictor. J Climate 16:799–816CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Climate Research FoundationMadridSpain
  2. 2.Marine Research DivisionAZTI-TecnaliaSukarrietaSpain
  3. 3.Department of Earth Physics and Thermodynamics, Faculty of PhysicsUniversity of ValenciaBurjassotSpain

Personalised recommendations