Skip to main content
Log in

Variation in black carbon mass concentration over an urban site in the eastern coastal plains of the Indian sub-continent

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Black carbon (BC) mass concentration variation has been studied, over a period of 2 years (June 2010–May 2012) at Bhubaneswar. Daily, monthly and seasonal measurements revealed a clear winter maxima (5.6 μg/m3) of BC followed by post-monsoon (4.05 μg/m3), monsoon (3.02 μg/m3) and pre-monsoon (2.46 μg/m3). Nighttime BC mass concentrations have been found to be distinctly higher during winter followed by post-monsoon and monsoon. Investigations reveal that the winter maxima are due to a stable atmospheric condition and long-range transport over the Indo-Gangetic Plain and Western Asia. Local boundary layer dynamics and anthropogenic activities have been assumed to have a pronounced effect on the diurnal cycle seasonally. Statistical analysis suggests significant variation of BC during the months and non-significant during the days. The study also gives an insight into importance of BC study from health angle and suggests an assessment and management framework. Source apportionment study suggests that BC mass concentration observed at Bhubaneswar is generally dominated by fossil fuel combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11

Similar content being viewed by others

References

  • Alappattu DP, Kunhikrishnan PK, Aloysius M, Mohan M (2009) A case study of atmospheric boundary layer features during winter over a tropical inland station—Kharagpur (22.32° N, 87.32° E). J Earth Syst Sci 118(4):281–293

    Article  Google Scholar 

  • Angelo LD, Black B (2008) London smog disaster, England. In: Cutler J. Cleveland (ed) Encyclopedia of earth. http://www.eoearth.org/article/London_smog_disaster,_England

  • Babu SS, Moorthy KK (2001) Anthropoenic impact on aerosol black carbon mass concentration at a tropical coastal station: a case study. Curr Sci 81:1208–1214

    Google Scholar 

  • Babu SS, Moorthy KK (2002) Aerosol black carbon over a tropical coastal station in India. Geophys Res Lett 29(23):2098. doi:10.1029/2002GL015662

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Kiran Chand TR, Ganga Parvathi Y, Anasuya T, Jyothsna AN (2007) Variation in black carbon aerosol, carbon monoxide and ozone over an urban area of Hyderabad, India during the forest fire season. Atmos Res 85:18–26

    Article  Google Scholar 

  • Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86

    Article  Google Scholar 

  • Baxla SP, Roy AA, Gupta T, Tripathi SN, Bandyopadhyaya R (2009) Analysis of diurnal and seasonal variation of submicron outdoor aerosol mass and size distribution in a northern India city and its correlation to black carbon. Aerosol Air Qual Res 9:458–469

    Google Scholar 

  • Beegum SN, Moorthy KK, Babu SS, Satheesh SK, Vinoj V, Badarinath KVS, Safai PD, Devara PCS, Singh S, Vinod V, Dumka UC, Pant P (2009) Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos Environ 43(5):1071–1078

    Article  Google Scholar 

  • Cao JJ, Zhu CS, Chow JC, Watson JG, Han YM, Wang GH, Shen ZX, An ZS (2009) Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos Res 94:194–202

    Article  Google Scholar 

  • Chakrabarty RK, Garro MA, Wilcox EM, Moosmuller H (2012) Strong radiative heating during wintertime black carbon aerosols in the Brahmaputra River Valley. Geophys Res Lett 39:L09804. doi:10.1029/2012GLo51148

    Google Scholar 

  • de Miranda RM, de Fatima Andrade M, Fornaro A, Astolfo R, de Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:63–77. doi:10.1007/s11869-010-0124-1

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2012) HYSPLIT (HYbrid single-particle Lagrangian integrated trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD.

  • Dumka UC, Moorthy KK, Kumar R, Hegde P, Sagar R, Pant P, Singh N, Babu SS (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos Res 96(4):510–521

    Article  Google Scholar 

  • Gadhavi H, Jayaraman A (2010) Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Ann Geophys 28:103–111. doi:10.5194/angeo-28-103-2010

    Article  Google Scholar 

  • Gilmour PS, Morrison ER, Vickers MA, Ford I, Ludlam CA, Greaves M, Donaldson K, MacNee W (2005) The procoagulant potential of environmental particles (PM10). Occup Environ Med 62:164–171. doi:10.1136/oem.2004.014951

    Google Scholar 

  • Gupta SP (2005) Statistical method. Sultan Chand and Sons, New Delhi

    Google Scholar 

  • Henriksson SV, Laaksonen A, Kerminen VM, Raisanen P, Jarvinen H, Sundstrom AM, de Leeuw G (2011) Spatial distribution and seasonal cycles of aerosols in India and China seen in global climate-aerosol model. Atmos Chem Phys 11:7975–7990. doi:10.5194/acp-11-7975-2011

    Article  Google Scholar 

  • Herich H, Hueglin C, Buchmann B (2011) A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos Meas Tech 4:1409–1420. doi:10.5194/amt-4-1409-2011

    Article  Google Scholar 

  • Highwood EJ, Kinnersley RP (2006) When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health. Environ Int 32:560–566

    Article  Google Scholar 

  • Huboyo HS, Budihardjo A, Hardyanti N (2009) Black carbon concentration in kitchens using fire-wood and kerosene fuels. J Appl Sci Environ Sanitation 4(1):55–62

    Google Scholar 

  • Justice C, Giglio L, Boschetti L, Roy D, Csiszar I, Morisette J, Kaufman Y (2006) Algorithm technical background document of MODIS fire products. EOS 2741, NASA Goddard Space Flight Cent., Greenbelt, Md. (Available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod14.pdf)

  • Kaufman YJ, Herring DD, Ranson KJ, Collatz GJ (1998a) Earth observing system AM1 mission to Earth. IEEE Trans Geosci Remote Sens 36(4):1045–1055

    Article  Google Scholar 

  • Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998b) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238. doi:10.1029/98JD01644

    Article  Google Scholar 

  • Kharol SK, Badarinath KVS, Sharma AR, Mahalakshmi DV, Singh D, Prasad VK (2012) Black carbon aerosol variations over Patiala city, Punjab, India—a study during agriculture crop residue burning period using ground measurements and satellite data. J Atmos Sol-Terr Phy 84:45–51

    Article  Google Scholar 

  • Kopp RE, Mauzerall DL (2010) Assessing the climate benefits of black carbon mitigation. P Natl Acad Sci 107(26):11703–11708. doi:10.1073/pnas.0909605107

    Article  Google Scholar 

  • Krishnan P, Kunhikrishnan PK (2004) Temporal variations of ventilation coefficient at a tropical Indian station using UHF wind profiler. Curr Sci 86(3):447–451

    Google Scholar 

  • Kumar M, Mallik C, Kumar A, Mahanti NC, Shekh AM (2010) Evaluation of the boundary layer depth in semi-arid region of India. Dyn Atmos Ocean 49:96–107

    Article  Google Scholar 

  • Kumar KR, Narasimhalu K, Balakrishnaiah G, Reddy BSK, Gopal KR, Reddy RR, Satheesh SK, Moorthy KK, Babu SS (2011) Characterization of aerosol black carbon over a tropical semi-arid region of Anantapur, India. Atmos Res 100:12–27

    Article  Google Scholar 

  • Kunhikrihnan PK, Gupta KS, Ramachandran R, Prakash WJ, Nair KN (1993) Study on thermal internal boundary layer structure over Thumba, India. Ann Geophys 11:52–60

    Google Scholar 

  • Liu S, Takahama S, Russell LM, Gilardoni S, Baumgardner D (2009) Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign. Atmos Chem Phys Discuss 9:1–40. (Available at http://aerosol.ucsd.edu/publications.html)

  • Mahapatra PS, Jena J, Moharana S, Srichandan H, Das T, Roy Chaudhury G, Das SN (2012a) Surface ozone variation at Bhubaneswar and intra-corelationship study with various parameters. J Earth Syst Sci 121:1163–1175. doi:10.1007/s12040-012-0216-4

    Article  Google Scholar 

  • Mahapatra PS, Ray S, Das N, Mohanty A, Ramulu TS, Das T, Roy Chaudhury G, Das SN (2012b) Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha. Theor Appl Climatol. doi:10.1007/s00704-012-0732-9

    Google Scholar 

  • Mallik C, Venkataramani S, Lal S (2012) Study of a high SO2 event observed over an urban site in Western India. Asia-Pacific J Atmos Sci 48(2):171–180. doi:10.1007/s13143-012-0017-3

    Article  Google Scholar 

  • Marey HS, Gille JC, El–Askary HM, Shalaby EA, El–Raey ME (2010) Study of the formation of the black cloud and its dynamics over Cairo, Egypt, using MODIS and MISR sensors. J Geophys Res 115, D21206. doi:10.1029/2010JD014384

    Article  Google Scholar 

  • Masuoka E, Fleig A, Wolfe RE, Patt F (1998) Key characteristics of MODIS data products. IEEE Trans Geosci Remote Sens 36(4):1313–1323.

    Google Scholar 

  • Pandey R, Tyagi AK (2012) Particulate matter emissions from domestic biomass burning in a rural tribal location in the lower Himalayas in India: concern over climate change. Small-scale Forestry 11:185–192. doi:10.1007/s11842-011-9177-8

    Article  Google Scholar 

  • Panicker AS, Pandithurai G, Safai PD, Dipu S, Lee DI (2010) On the contribution of black carbon to the composite aerosol radiative forcing over an urban environment. Atmos Environ 44:3066–3070

    Article  Google Scholar 

  • Park SS, Hansen ADA, Cho SY (2010) Measurement of real time black carbon for investigating spot loading effects of aethalometer data. Atmos Environ 44:1449–1455

    Google Scholar 

  • Pathak B, Kalita G, Bhuyan K, Bhuyan PK, Moorthy KK (2010) Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India. J Geophys Res 115:D19204. doi:10.1029/2009JD013462

    Article  Google Scholar 

  • Qiu J, Yang L (2000) Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1984–1994. Atmos Environ 34(4):603–609

    Article  Google Scholar 

  • Raju MP, Safai PD, Rao PSP, Devara PCS, Budhavant KB (2011) Seasonal characteristics of black carbon aerosols over a high altitude station in Southwest India. Atmos Res 100(1):103–110. doi:10.1016/j.atmosres.2011.01.006

    Article  Google Scholar 

  • Ramachandran S, Rajesh TA (2007) Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada, and the United States. J Geophys Res 112:D06211. doi:10.1029/2006JD007488

    Google Scholar 

  • Ramanathan V, Ramana MV (2003) Atmospheric brown clouds: long-range transport and climate impacts. EM 12:28–33, http://www-ramanathan.ucsd.edu/VRpdfFiles/EM_Paper_20031_final.pdf

    Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. P Natl Acad Sci 102(15):5326–5333

    Article  Google Scholar 

  • Ramanathan V, Li F, Ramana MV, Praveen PS, Kim D, Corrigan CE, Nguyen H, Stone EA, Schauer JJ, Carmichael GR, Adhikary B, Yoon SC (2007) Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res 112:D22S21. doi: 10.1029/2006JD008124

  • Reddy MS, Venkataraman C (2002a) Inventory of aerosol and sulphur dioxide emissions from India: I—fossil fuels combustion. Atmos Environ 36:677–697

    Article  Google Scholar 

  • Reddy MS, Venkataraman C (2002b) Inventory of aerosol and sulphur dioxide emissions from India: II—biomass combustion. Atmos Environ 36:699–712

    Article  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopa KR, Reddy RR, Reddy LSS, Ahammed TN, Narasimhulu K, Moorthy KK, Babu SS (2012) Potential source regions contributing to seasonal variations of black carbon aerosols over Anantapur in Southeast India. Aerosol Air Qual Res 12(3):344–358. doi:10.4209/aaqr.2011.10.0159

    Google Scholar 

  • Rolph GD (2012) Real-time environmental applications and display system (READY) Website (http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD.

  • Safai PD, Kewat S, Praveen PS, Rao PSP, Momin GA, Ali K, Devara PCS (2007) Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos Environ 41(13):2699–2709

    Article  Google Scholar 

  • Saha A, Despiau S (2009) Seasonal and diurnal variations of black carbon aerosols over a Mediterranean coastal zone. Atmos Res 92:27–41

    Article  Google Scholar 

  • Sahu LK, Kondo Y, Miyazaki Y, Pongkiatkul P, Oanh NTK (2011) Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. J Geophys Res 116:D15302. doi:10.1029/2010JD015563

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley-Interscience, USA

    Google Scholar 

  • Sharma RK, Bhattarai BK, Sapkota BK, Gewali MB, Kjeldstad B (2012) Black carbon aerosol in Kathmandu Valley. Atmos Environ. doi:10.1016/j.atmosenv.2012.09.023

    Google Scholar 

  • Soni K, Singh S, Bano T, Tanwar RS, Nath S (2011) Wavelength dependence of the aerosol angstrom exponent and its implications over Delhi, India. Aerosol Sci Tech 45(12):1488–1498

    Article  Google Scholar 

  • Srinivasan J, Gadgil S (2002) On the Asian brown cloud controversy. Curr Sci 83(11):1307–1309

    Google Scholar 

  • Srivastava AK, Singh S, Pant P, Dumka UC (2012a) Characteristics of black carbon over Delhi and Manora Peak—a comparative study. Atmos Sci Let 13:223–230. doi:10.1002/asl.386

    Article  Google Scholar 

  • Srivastava AK, Ram K, Pant P, Hegde P, Joshi H (2012b) Black carbon aerosols over Manora Peak in the Indian Himalayan foothills: implications for climate forcing. Environ Res Lett 7:014002. doi:10.1088/1748-9326/7/1/014002

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, New York, p 666

    Book  Google Scholar 

  • Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ (2008) Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol 167(3):280–286. doi:10.1093/aje/kwm308

    Article  Google Scholar 

  • Swamy YV, Venkanna R, Nikhil GN, Chitanya DNSK, Sinha PR, Ramakrishna M, Rao AG (2012) Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semi arid urban site in Hyderabad. Aerosol Air Qual Res 12(4):662–671. doi:10.4209/aaqr.2012.01.0019

    Google Scholar 

  • Tripathi SN, Dey S, Tare V, Satheesh SK (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32:L08802. doi:10.1029/2005GL022515

    Google Scholar 

  • Tripathi SN, Srivastava AK, Dey S, Satheesh SK, Moorthy KK (2007) The vertical profile of atmospheric heating rate of black carbon aerosols at Kanpur in northern India. Atmos Environ 41(32):6909–6915

    Article  Google Scholar 

  • Venkatraman C, Habib G, Eiguren-Fernandez A, Mignel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456

    Article  Google Scholar 

  • Verma S, Pani SK, Bhanja SN (2012) Sources and radiative effects of wintertime black carbon aerosols in an urban atmosphere in east India. Chemosphere. doi:10.1016/j.chemosphere.2012.06.063

    Google Scholar 

  • Virkkula A, Makela T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hameri K, and Koponen IK (2007) A simple procedure for correcting loading effects of aethalometer data. J of the Air & Waste Manag Assoc 57:1214–1222

    Google Scholar 

  • Wang Y, Hopke PK, Utell MJ (2011) Urban-scale spatial-temporal variability of black carbon and winter residential wood combustion particles. Aerosol Air Qual Res 11:473–481. doi:10.4209/aaqr.2011.01.0005

    Google Scholar 

  • Wang QY, Schwarz JP, Cao JJ, Gao RS, Fahey DW, Hu TF (2012) Single particle characterization of black carbon aerosol in the Northeast Tibetan Plateau, China. Atmos Chem Phys Discuss 12:21947–21976. doi:10.5194/acpd-12-21947-2012

    Article  Google Scholar 

  • Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34(10):1445–1463

    Article  Google Scholar 

Websites

Download references

Acknowledgements

The authors are thankful to the Director, Institute of Minerals and Materials Technology (CSIR-IMMT) and the Head, Environment and Sustainability Department (CSIR-IMMT) for their encouragement. Financial support by ISRO-GBP is gratefully acknowledged. The authors acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://ready.arl.noaa.gov) used in this publication. Acknowledgements are also due to the “NASA FIRMS” team who are actively involved in providing the satellite data on fire (http://earthdata.nasa.gov/firms) as well as for their timely assistance through their support system for initial interpretation of data for this study. The authors also that the help of Dr. S.C. Sahu, Director IMD-Bhubaneswar, and the office staff for helping us in using the meteorological data.

The authors would like to acknowledge the help of Mr. Chinmay Mallik in plotting the inversion graphs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, P.S., Panda, S., Das, N. et al. Variation in black carbon mass concentration over an urban site in the eastern coastal plains of the Indian sub-continent. Theor Appl Climatol 117, 133–147 (2014). https://doi.org/10.1007/s00704-013-0984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0984-z

Keywords

Navigation