Skip to main content
Log in

Differences between two climatological periods (2001–2010 vs. 1971–2000) and trend analysis of temperature and precipitation in Central Brazil

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In the framework of the IWAS/Água-DF project, this study focuses on changes in mean surface air temperature and accumulated precipitation in Central Brazil over the past 40 years. It has two main objectives: (1) comparison between two climatological periods (2001–2010 and 1971–2000) and (2) trend analysis of climate variables. Time series of meteorological and rain gauge stations from Central Brazil have been organized in a databank, which contains tools for homogeneity tests. From that, 4 temperature and 55 precipitation time series were sufficient homogeneous, while 1 temperature and 5 precipitation time series were identified as inhomogeneous. Reliable spatial distribution was produced using proper interpolation method. Trends and significance levels were calculated by Rapp’s estimator of slope and Mann–Kendall test, respectively. The most important results of the comparisons and trend analysis in the last four decades are: (1) marked increase in annual and seasonal mean surface air temperature, (2) evident decreases of accumulated rainfall in winter and autumn, and (3) apparent increase of precipitation amounts in the rainy season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidance on metadata and homogenization. WMO TD N. 1186 (WCDMP N. 53), WMO, Geneva

  • Alexandersson H (1986) A homogeneity test to precipitation data. Int J Climatol 6:661–675

    Article  Google Scholar 

  • Alves LM (2009) Clima da Região Centro-Oeste do Brasil. In: Cavalcanti IFA, Ferreira NJ, Da Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 235–241

    Google Scholar 

  • Bárdossy A, Pegram G (2011) Downscaling precipitation using regional climate models and circulation patterns toward hydrology. Water Resour Res 47, W04505. doi:10.1029/2010WR009689

    Google Scholar 

  • Bernhofer C (2004) Grundlagen der Meteorologie und Hydrologie. Script, Chair of Meteorology. TUD, Tharandt

    Google Scholar 

  • Bernhofer C, Goldberg V, Franke J, Surke M, Adam J (2008a) REKLI—Sachsen-Anhalt II Regionale Klimadiagnose für Sachsen-Anhalt. Abschlussbericht zum Forschungsvorhaben des Landesamt für Umweltschutz. Sachsen-Anhalt, Dresden

    Google Scholar 

  • Bernhofer C, Goldberg V, Franke J, Häntzschel J, Harmansa S, Pluntke T, Geidel K, Surke M, Prasse H, Freydank E, Hänsel S, Mellentin U, Küchler W (2008b) Sachsen im Klimawandel, Eine Analyse. Sächsisches Staatsministerium für Umwelt und Landwirtschaft (Hrsg.), Dresden

  • Birsan M-V, Molnar P, Burlando P (2005) Streamflow trends in Switzerland. J Hydrol 314(1–4):312–329. doi:10.1016/j.jhydrol.2005.06.008

    Article  Google Scholar 

  • Borges P, Franke J, Tanaka M, Weiss H, Bernhofer C (2013) Spatial interpolation of climatological information: comparison of methods for the development of precipitation distribution in Distrito Federal, Brazil. Atmos Clim Sci 3(2):208–217. doi:10.4236/acs.2013.32022

    Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58(1-2):11–27. doi:10.1016/0022-1694(82)90066-X

    Article  Google Scholar 

  • Callejas IJA, de Oliveira AS, Santos FMD, Durante LC, Nogueira MCDA, Zeilhofer P (2011) Relationship between land use/cover and surface temperatures in the urban agglomeration of Cuiabá-Várzea Grande, Central Brazil. J App Remote Sens 5(1). doi:10.1117/1.3666044

  • Carvalho LMV, Jones C (2009) Zona de Convergência do Atlântico Sul. In: Cavalcanti IFA, Ferreira NJ, Da Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 95–109

    Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic convergence zone: persistence, intensity, form, extreme precipitation and relationships with intraseasonal activity. J Climate 17:88–108

    Article  Google Scholar 

  • Craddock JM (1956) The representation of the annual temperature variation over Central and northern Europe by a two-term harmonic form. Q.J.R. Meteorol Soc 82:275–288. doi:10.1002/qj.49708235304

    Article  Google Scholar 

  • Dahmen ER, Hall MJ (1990) Screening of Hydrological Data: Tests for Stationarity and Relative Consistency. Publication No. 49, International Institute for Land Reclamation and Improvement (ILRI), Wageningen

  • Dixon WJ (1950) Analysis of extreme values. Ann Math Statist 21:488–506

    Article  Google Scholar 

  • Dobler C, Hagemann S, Wilby RL, Stötter J (2012) Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol Earth Syst Sci 16:4343–4360. doi:10.5194/hess-16-4343-2012

    Article  Google Scholar 

  • Dyras I, Dobesch H, Grueter E, Perdigao A, Tveito OE, Thornes JE, Fvd W, Bottai L (2005) The use of geographic information systems in climatology and meteorology: COST 719. Met Apps, Brussels

    Google Scholar 

  • Franke J, Goldberg V, Eichelmann U, Freydank E, Bernhofer C (2004) Statistical analysis of regional climate trends in Saxony, Germany. Clim Res 27:145–150

    Article  Google Scholar 

  • Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over West-Central Brazil. J Climate 17:47–66. doi:10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources techniques of water resources investigations. U.S. Geological Survey, USA

    Google Scholar 

  • Herzog J, Müller-Westermeier G (1998) Homogenitätsprüfung und Homogenisierung klimatologischer Messreihen im Deutschen Wetterdienst. Deutsch Wetterdienst, Offenbach

    Google Scholar 

  • IPCC-TGCIA (1999) Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 1. Prepared by Carter, T.R., M. Hulme, and M. Lal. Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, Geneva

  • Karpouzos DK, Kavalieratou S, Babajimopoulos C (2010) Trend analysis of precipitation data in Pieria Region (Greece). European Water 30:31–40

    Google Scholar 

  • Kendall MG (1970) Rank correlation methods, 4th edn. Griffin, London

    Google Scholar 

  • Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Rev Brasileira de Meteorologia 3:217–231

    Google Scholar 

  • Lhotellier R (2005) Spatialisation des températures en zone de montagne alpine. Université Joseph Fourier, Dissertation

    Google Scholar 

  • Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel F, Gaffron A, Hebben N, Höfer R, Makeschin F, Neder K, Roig HL, Steiniger B, Strauch M, Walde DH, Weiß H, Worch E, Wummel J (2012) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil: climate, land-use, and water resources. Environ Earth Sci 65(5):1363–1366. doi:10.1007/s12665-011-1219-1

    Article  Google Scholar 

  • Lu X (2006) Guidance on the Development of Regional Climate Scenarios for Application in Climate Change Vulnerability and Adaptation Assessments. Within the Framework of National Communications from Parties not Included in Annex I to the United Nations Framework Convention on Climate Change, National Communications Support Program. UNDP-UNEP-GEF, New York

  • Maddox RA (1980) Mesoscale convective complexes. Bull Am Meteorol Soc 61:1374–1387. doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric test against trends. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Marengo JA, Ambrizzi T, Soares WR (2009) Jatos de Baixos Níveis ao longo dos Andes. In: Cavalcanti IFA, Ferreira NJ, Da Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de Textos, São Paulo, pp 169–180

    Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2009) Time trends of daily maximum and minimum temperatures in Catatonia (NE Spain) for the period 1975–2004. Int J Climatol 30(2):267–290. doi:10.1002/joc.1884

    Google Scholar 

  • Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric Meteorol 92:211–225

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I – A discussion of principles. J Hydrol 10(39):282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Paegle J (1998) A comparative review of South American low level jets. Meteorologica 3:73–82

    Google Scholar 

  • Pavlik D, Söhl D, Pluntke T, Mykhnovych A, Bernhofer C (2012) Dynamic downscaling of global climate projections for eastern Europe with a horizontal resolution of 7 km. Environ. Earth Sci 65:1475–1482. doi:10.1007/s12665-011-1081-1

    Article  Google Scholar 

  • Rapp J (2000) Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. Bericht Nr.212, Deutsch Wetterdienst, Offenbach

  • Rapp J, Schönwiese CD (1995) Klimatrend-Atlas Deutschland 1891–1990. Frankfurt Geowiss Arb 5, University of Frankfurt (Main)

  • Renard F, Comby J (2006) Evaluation of rainfall spatial interpolation methods in urban area for a better management of extreme rainy events: the case of the urban area of Greater Lyon. Le Houile Blanche 6:75–78. doi:10.1051/lhb:2006104

    Google Scholar 

  • Salas D (1993) Analysis and modeling of hydrologic time series (Chapter 19). In: Maidment DR (ed) Handbook of Hydrology. McGraw Hill, New York

    Google Scholar 

  • Schönwiese CD (2000) Praktische Statistik für Meteorologen und Geowissenschaftler. Gebrüder Borntaeger 3, Berlin

  • Schönwiese CD, Malcher J (1985) Nicht Stationarität oder Inhomogenität? Ein Beitrag zur statistischen Analyse klimatologischer Zeitreihen. Wetter Leben 37:181–193

    Google Scholar 

  • Trewin B (2007) The role of climatological normals in a changing climate Tech. Rep. WDMCP-No. 61 World Meteorological Organization, Geneva

  • Tveito OE, Førland EJ (1999) Mapping temperatures in Norway applying terrain information, geostatistics, and GIS. Norsk geogr Tidsskr 53:202–212. doi:10.1080/002919599420794

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Diaz PL, Zhang C (2006) Towards a unified view of the American monsoon system. J Climate 19:4977–5000

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate Geostatistics. Springer, Berlin

    Book  Google Scholar 

  • Wilby R, Dawson CW (2012) The statistical downscaling model: insights from one decade of application. Int J Climatol. doi:10.1002/joc.3544

    Google Scholar 

  • WMO (1989) World Climate Data Program: Calculation of Monthly and Annual 30-year Standard Normals, WCDP-No.10, WMO-TD/No. 341, Prepared by a meeting of experts, Washington

  • Zhou J, Lau KM (1998) Does a Monsoon Climate Exist over South America? J Climate 11:1020–1040. doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the International Water Research Alliance Saxony—IWAS initiative and the International Postgraduate Studies in Water Technologies—IPSWaT scholarship program (both funded by the German Federal Ministry of Education and Research, BMBF) for the opportunity given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo de Amorim Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, P.A., Franke, J., do Santos Silva, F.D. et al. Differences between two climatological periods (2001–2010 vs. 1971–2000) and trend analysis of temperature and precipitation in Central Brazil. Theor Appl Climatol 116, 191–202 (2014). https://doi.org/10.1007/s00704-013-0947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-013-0947-4

Keywords

Navigation