Theoretical and Applied Climatology

, Volume 116, Issue 1–2, pp 169–190 | Cite as

Glacier shrinkage driven by climate change during half a century (1954–2007) in the Ortles-Cevedale group (Stelvio National Park, Lombardy, Italian Alps)

  • Carlo D’Agata
  • Daniele BocchiolaEmail author
  • Davide Maragno
  • Claudio Smiraglia
  • Guglielmina Adele Diolaiuti
Original Paper


The recent evolution of a representative subset of Alpine glaciers (i.e. 43 glaciers located in the Ortles-Cevedale group, Stelvio National Park, Italy) is described by analysing surface area changes. The database covers half a century of Alpine glacier history (from 1954 to 2007), thus allowing to describe glacier changes on a relatively long time window. Further, the subset of Alpine glaciers chosen for the analysis are among the best known and studied of Italy, also comprising the widest Italian valley glacier. The analysis provided area surface changes as −19.43 km2 ± 1.2 %, approximately −40 %, from 1954 to 2007. Small glaciers contributed strongly to total area loss. The area change rate accelerated lately, with a surface reduction of approximately 8.7 % between 2003 and 2007, i.e. a mean area loss of approximately 0.693 km2/year. The mean yearly loss over the previous periods (1954–1981, 1981–2003 and 1990–2003) were 0.242, 0.436 and 0.476 km2/year, respectively. From a geodynamical perspective, the Ortles-Cevedale group is now experiencing transition from a glacial system to a paraglacial one. The areas where most recently the main shaping and driving factors were glaciers are now subject to the action of melting water, slope evolution and periglacial processes. We also investigated seasonal values of key climatic variables (1951–2007), namely, temperature, precipitation and snow cover in the area, to evaluate their potential effects upon glacier dynamics. We performed linear regression and Mann–Kendall tests to highlight significant non-stationarity and onset of trends of our target climate variables. We investigated the correlation between local weather variables, North Atlantic Oscillation anomalies and global thermal anomaly to highlight the link of local weather patterns against global weather. We further carried out correlation analysis of weather variables (with different lags) against glacier terminus fluctuations during 1951–2006 for the two most studied glaciers of the Ortles-Cevedale group to highlight the response of glaciers to climate variability. We found increased temperature and decreased precipitation and snow cover likely to have driven accelerated glacier’s shrinkage during the last three decades.


Lateral Moraine Glacier Surface Differential Global Position System Differential Global Position System Glacier Tongue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed in the framework of a pilot project (named SHARE STELVIO) that is online since 2009. This project, supported by the Lombardy Government through FLA (Fondazione Lombardia per l’Ambiente) and EvK2CNR Committee, is devoted to detecting and quantifying climate change effects and impacts in the area of the Stelvio National Park (Lombardy, Italy). The authors are grateful to the Lombardy Region for the support in the research. The aerial photos and the 2003 and 2007 orthophotos were analysed in cooperation with the Infrastructure for the Territory Information Unit of the Lombardy Region through an agreement between Lombardy Region and the University of Milan. The Orthophoto 2003 and 2007 (Terraitaly 2003 and 2007) was produced by Blom CGR. Daniele Bocchiola acknowledges the support of the “I-CARE” project funded by Politecnico di Milano.


  1. Ballantyne CK, Benn DI (1996) Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. In: Anderson MG, Brooks SM (eds) Advances in hillslope processes, 2nd edn. Wiley, Chichester, pp 1173–1195Google Scholar
  2. Begert M, Schlegel T, Kichhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80CrossRefGoogle Scholar
  3. Beniston M (2000) Environmental change in mountains and uplands. Arnold, LondonGoogle Scholar
  4. Benn DI, Evans D (2010) Glaciers and glaciation. Oxford University Press, OxfordGoogle Scholar
  5. Bocchiola D, Diolaiuti G (2010) Evidence of climate change within the Adamello Glacier of Italy. Theor Appl Climatol 100(3–4):351–369CrossRefGoogle Scholar
  6. Bocchiola D, Diolaiuti G (2012) Recent (1980–2009) evidence of climate change in the upper Karakoram Pakistan. Theor Appl Climatol. doi: 10.1007/s00704-012-0803-y Google Scholar
  7. Bocchiola D, Mihalcea C, Diolaiuti G, Mosconi B, Smiraglia C, Rosso R (2010) Flow prediction in high altitude ungauged catchments: a case study in the Italian Alps (Pantano Basin, Adamello Group). Adv Water Resour 33(10):1224–1234CrossRefGoogle Scholar
  8. Böhm RI, Auer A, Brunetti MB, Maugeri M, Nanni C, Schöner BW (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi: 10.1002/joc.689 CrossRefGoogle Scholar
  9. Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72(3):354–369CrossRefGoogle Scholar
  10. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111, D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  11. Brunetti M, Maugeri M, Nanni T (2000) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65:165–174CrossRefGoogle Scholar
  12. Buzzini P, Turchetti B, Diolaiuti G, D’Agata C, Martini A, Smiraglia C (2005) Yeast biodiversity in melting ice from glaciers in the Italian Alps. Ann Glaciol 40:119–122CrossRefGoogle Scholar
  13. Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on Alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18:637–648CrossRefGoogle Scholar
  14. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  15. Citterio M, Diolaiuti G, Smiraglia C, D’Agata C, Carnielli T, Stella G, Siletto GB (2007a) The fluctuations of Italian glaciers during the last century: a contribution to knowledge about Alpine glacier changes. Geogr Ann 89(A3):164–182Google Scholar
  16. Citterio M, Diolaiuti G, Smiraglia C, Verza GP, Meraldi E (2007b) Initial results from the Automatic Weather Station (AWS) on the ablation tongue of Forni Glacier (Upper Valtellina, Italy). Geografia Fisica e Dinamica Quaternaria 30(2):141–151Google Scholar
  17. Clayton L (1964) Karst topography on stagnant glaciers. J Glaciol 5:107Google Scholar
  18. Comitato Glaciologico Italiano (CGI) (1977) Campagne Glaciologiche. Bollettino del Comitato Glaciologico Italiano, 1–25, Series I and II, Torino, Italy 1914–1977Google Scholar
  19. Comitato Glaciologico Italiano (CGI) (2011) Campagne Glaciologiche. Geografia Fisica e Dinamica Quaternaria, 1–39, Torino, Italy, 1978–2011Google Scholar
  20. Consiglio Nazionale delle Ricerche (CNR) (1961) Comitato Glaciologico Italiano (CGI): Catasto dei Ghiacciai Italiani. Volumes I, II and III, Torino, Italy. Available at
  21. Curry A, Ballantyne CK (1999) Paraglacial modification of hillslope glacigenic drift. Geogr Ann 81A:409CrossRefGoogle Scholar
  22. Deline P (2005) Change in surface debris cover on Mont Blanc massif glaciers after the Little Ice Age termination. Holocene 15:302–309CrossRefGoogle Scholar
  23. Deline P, Kirkbride MP (2009) Rock avalanches on a glacier and morainic complex in Haut Val Ferret (Mont Blanc Massif, Italy). Geomorphology 103:80–92CrossRefGoogle Scholar
  24. Desio A (1967) I ghiacciai dell’Ortles-Cevedale Comitato Glaciologico Italiano, TorinoGoogle Scholar
  25. Diolaiuti G (2001) La recente riduzione dei ghiacciai lombardi: i risultati degli ultimi bilanci di massa [Recent reduction of Lombardy glaciers: results from last mass budgets]. Geografia Fisica e Dinamica Quaternaria Suppl. V, pp 65–68Google Scholar
  26. Diolaiuti G, Smiraglia C (2010) Changing glaciers in a changing climate: how vanishing geomorphosites have been driving deep changes on mountain landscape and environment. Géomorphologie: relief, processus, environnement GPRE 2:131–152CrossRefGoogle Scholar
  27. Diolaiuti G, Smiraglia C, Reynaud L, D’Agata C, Pavan M (2002) Relation entre les bilans de masse de la Sforzellina et ceux des autres glaciers en Europe. Influence des facteurs localisation géographique et taille du glacier. La Houille Blanche 6(7):1–5Google Scholar
  28. Diolaiuti G, Smiraglia C, Pelfini M, Belò M, Pavan M, Vassena G (2006) The recent evolution of an Alpine glacier used for summer skiing (Vedretta Piana, Stelvio Pass, Italy). Cold Reg Sci Technol 44:206–216CrossRefGoogle Scholar
  29. Diolaiuti G, Smiraglia C, Verza GP, Chillemi R, Meraldi E (2009a) La rete micro-meteorologica glaciale lombarda: un contributo alla conoscenza dei ghiacciai alpini e delle loro variazioni recenti [Micro-meteorologic glacial network in Lombardy: a contribution to knowledge of Alpine glaciers and their recent variations]. In: Smiraglia C, Morandi G, Diolaiuti G (eds) Clima e Ghiacciai: La crisi delle risorse glaciali in Lombardia, Regione Lombardia, 69–92 (in Italian)Google Scholar
  30. Diolaiuti G, D’Agata C, Meazza A, Zanutta A, Smiraglia C (2009b) Recent (1975–2003) changes in the Miage debris-covered glacier tongue (Mont Blanc, Italy) from analysis of aerial photos and maps. Geografia Fisica e Dinamica Quaternaria 32:117–127Google Scholar
  31. Diolaiuti G, Maragno D, D’Agata C, Smiraglia C, Bocchiola D (2011) A contribution to the knowledge of the last fifty years of Alpine glacier history: the1954–2003 area and geometry changes of Dosdè Piazzi glaciers (Lombardy–Alps, Italy). Prog Phys Geogr 35(2):161–182CrossRefGoogle Scholar
  32. Diolaiuti G, Bocchiola D, D’agata C, Smiraglia C (2012a) Evidence of climate change impact upon glaciers’ recession within the Italian Alps: the case of Lombardy glaciers. Theor Appl Climatol 109(3–4):429–445CrossRefGoogle Scholar
  33. Diolaiuti G, Bocchiola D, Vagliasindi M, D’agata C, Smiraglia C (2012b) The 1975–2005 glacier changes in Aosta Valley (Italy) and the relations with climate evolution. Prog Phys Geogr 36(6):764–785CrossRefGoogle Scholar
  34. Dyurgerov MB, Meier MF (2000) Twentieth century climate change: evidence from small glaciers. PNAS 97(4):1406–1411CrossRefGoogle Scholar
  35. Eberhard R (1997) Pattern and processes: towards a regional approach to national estate assessment of geodiversity. Technical series 2. Australian Heritage, Commission and Environment Forest Taskforce, Environment Australia, CanberraGoogle Scholar
  36. Erikstad L (1999) A holistic approach to secure geoconservation in local physical planning. In: Barettino D, Vallejo M, Gallego E (eds) Towards the balanced management and conservation of the geological heritage in the new millennium. Sociedad Geologica de Espana, Madrid, pp 69–72Google Scholar
  37. European Environment Agency (EEA) (2004) Impacts of Europe’s changing climate. 107 pp, ISBN: 92-9167-692-6Google Scholar
  38. Eyles N (1979) Facies of supraglacial sedimentation on Icelandic and Alpine temperate glaciers. Can J Earth Sci 16:1341CrossRefGoogle Scholar
  39. González Trueba JJ, Martín Moreno R, Martínez de Pisón E, Serrano E (2008) “Little Ice Age” glaciation and current glaciers in the Iberian Peninsula. Holocene 18:551–568CrossRefGoogle Scholar
  40. Gray M (2004) Geodiversity valuing and conserving abiotic nature. Wiley, ChichesterGoogle Scholar
  41. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F02S18Google Scholar
  42. Guglielmin M, Nardo A, Smiraglia C (1995) Lo spessore dei ghiacciai della Valfurva. Misurazioni tramite Sondaggi Elettrici Verticali [Thickness of valfurva glaciers: measurements using vertical electric soundings]. Neve e Valanghe 24:58–67Google Scholar
  43. Haeberli W (1996) On the morphodynamics of ice/debris-transport systems in cold mountain areas. Nor Geogr Tidsskr 50:3–9CrossRefGoogle Scholar
  44. Haeberli W (2008) Changing view of changing glaciers. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening peaks: glacier retreat, science and society. University of California Press, Los Angeles, pp 23–32Google Scholar
  45. Haeberli W, Wegmann M, Vonder Muhll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Eclogae Geol Helv 90:407–414Google Scholar
  46. Hoelzle M, Haeberli H, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Glob Planet Chang 36:295–306CrossRefGoogle Scholar
  47. Huggel C, Zgraggen-Oswals S, Haeberli W, Kääb A, Polkvoj A, Galushk I et al (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5:173–187CrossRefGoogle Scholar
  48. Huss M, Funk M, Ohmura A (2009) Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36, L23501CrossRefGoogle Scholar
  49. IPCC (2001) Climate change 2001 the scientific basis. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Section 4.3.11. Cambridge University Press, CambridgeGoogle Scholar
  50. IPCC (2007) Fourth assessment report: climate change 2007. Synthesis report (AR4), WMO-UNEPGoogle Scholar
  51. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  52. Kääb A, Paul F, Maisch M, Kellenberger T, Haeberli W (2002) The new remote sensing derived Swiss glacier inventory: II. First results. Ann Glaciol 34:362–366CrossRefGoogle Scholar
  53. Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Global Planet Chang 22(1–4):93–103CrossRefGoogle Scholar
  54. Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press, CambridgeGoogle Scholar
  55. Kellerer-Pirklbauer A, Karl Lieb G, Avian M, Gspurning J (2008) The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006. Geografiska Annaler: Series A Physical Geography 90:269–285CrossRefGoogle Scholar
  56. Kendall MG (1975) Rank correlation methods. Oxford University Press, New YorkGoogle Scholar
  57. Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens Environ 102(1–2):24–32CrossRefGoogle Scholar
  58. Kirkbride MP (1993) Processes of transportation. In: Menzies J (ed) Glacial environments, vol. I, modern glacial environments: processes, dynamics and sediments. Butterworth-Heinemann, Oxford, pp 261–292Google Scholar
  59. Knoll C, Kerschner H (2009) A glacier inventory for South Tyrol, Italy, based on airborne laser scanner data. J Glaciol 50:46–52CrossRefGoogle Scholar
  60. Kuhn M (1980) Climate and glaciers. IAHS 131:3–20Google Scholar
  61. Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr Sci 92(1):69–74Google Scholar
  62. Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184CrossRefGoogle Scholar
  63. Letréguilly A, Reynaud L (1990) Space and time distribution of glacier mass-balance in the Northern Hemisphere. Arct Alp Res 22(1):43–50CrossRefGoogle Scholar
  64. Lombardia R (2009) I Geositi della Provincia di Sondrio. Regione Lombardia, MilanoGoogle Scholar
  65. Maisch M (2000) The longterm signal of climate change in the Swiss Alps Glacier retreat since the Little Ice Age and future ice decay scenarios. Geografia Fisica e Dinamica Quaternaria 23:139–152Google Scholar
  66. Manley WF (2008) Geospatial inventory and analysis of glaciers: a case study for the eastern Alaska Range. In: Williams RS Jr, Ferrigno JG (eds) Satellite image atlas of glaciers of the world. US Geological Survey Professional Paper 1386-KGoogle Scholar
  67. Maragno D, Diolaiuti G, D’Agata C, Mihalcea C, Bocchiola D, Bianchi Janetti E, Riccardi A, Smiraglia C (2009) New evidence from Italy (Adamello Group, Lombardy) for analysing the ongoing decline of Alpine glaciers. Geografia Fisica e Dinamica Quaternaria 32:31–39Google Scholar
  68. Mark BG, Seltzer GO (2005) Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass loss and climatic forcing. Quat Sci Rev 2420–21:2265–2280CrossRefGoogle Scholar
  69. Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. In: Young GJ (ed) Snow and glacier hydrology. IAHS publication no. 218. International Association of Hydrological Sciences, Wallingford, pp 289–296Google Scholar
  70. Mihalcea C, Mayer C, Diolaiuti G, Lambrecht A, Smiraglia C, Tartari G (2006) Ice ablation and meteorological conditions on the debris covered area of Baltoro Glacier (Karakoram, Pakistan). Ann Glaciol 43:292–300CrossRefGoogle Scholar
  71. Nagy L, Grabherr G, Körner C, Thompson DBA (1961) Alpine biodiversity in Europe. Ecological studies. Springer, Berlin, p 450Google Scholar
  72. Nakawo M, Rana B (1999) Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geografiska Annaler: Series A Physical Geography 81:695–701CrossRefGoogle Scholar
  73. Nakawo M, Young GJ (1981) Field experiments to determinate the effect of a debris layer on ablation of glacier ice. Ann Glaciol 2:85–91CrossRefGoogle Scholar
  74. Nakawo M, Young GJ (1982) Estimate of glacier ablation under debris layer from surface temperature and meteorological variables. J Glaciol 28(98):29–34Google Scholar
  75. Nemec J, Huybrechts J, Rybak O, Oerlemans J (2009) Reconstruction of the annual balance of Vadret da Morteratsch, Switzerland, since 1865. Ann Glaciol 50:126–134CrossRefGoogle Scholar
  76. Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677CrossRefGoogle Scholar
  77. Oerlemans J (2007) Estimating response times of Vadret da Morteratsch, Vadret da Palu, Briksdalsbreen and Nigardsbreen from their length records. J Glaciol 53:357–362CrossRefGoogle Scholar
  78. Oerlemans J, Anderson A, Hubbard A, Huybrechts P, Jóhanneson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14:267–274CrossRefGoogle Scholar
  79. Ohlendorf C, Niessenn F, Weissert H (1997) Glacial varve thickness and 127 years of instrumental climate data: a comparison. Clim Chang 36:391–411CrossRefGoogle Scholar
  80. Osborn TJ (2004) Simulating the Winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623CrossRefGoogle Scholar
  81. Osborn TJ (2006) Recent variations in the Winter North Atlantic Oscillation. Weather 61:353–355CrossRefGoogle Scholar
  82. Østrem G (1959) Ice melting under a thin layer of moraine and the existence of ice in moraine ridges. Geografiska Annaler: Series A Physical Geography 41:228–230Google Scholar
  83. Panizza M (2009) The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1:33–42CrossRefGoogle Scholar
  84. Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31, L21402CrossRefGoogle Scholar
  85. Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed from satellite: consequences for future monitoring strategies. Glob Planet Chang 56(1/2):111–122CrossRefGoogle Scholar
  86. Paul F, Barry RG, Cogley JG, Frey H, Haeberli W, Ohmura A, Ommanney CSL, Raup B, Rivera A, Zemp M (2010) Recommendations for the compilation of glacier inventory data from digital sources. Ann Glaciol 50(53):119–126CrossRefGoogle Scholar
  87. Pelfini M (1987) Contributo alla conoscenza delle variazioni oloceniche del Ghiacciaio dei Forni. Natura Bresciana Annali del Museo Civico di Scienze Naturali 24:237–257Google Scholar
  88. Pelfini M (1996) Surface area reduction and rise of the equilibrium-line on the Ortles-Cevedale Group (Lombardy, Italy) from the Little Ice Age to present. Riv Geogr Ital 103(63–71):1996Google Scholar
  89. Pelfini M, Gobbi M (2005) The ecological value of Forni Glacier as a possible new geomorphosite: new data from arthropods communities. Geografia Fisica e Dinamica Quaternaria 28(2):211–217Google Scholar
  90. Pelto MS (2010) Forecasting temperate alpine glacier survival from accumulation zone observations. Cryosphere 4:67–75CrossRefGoogle Scholar
  91. Purdie J, Fitzharris B (1999) Processes and rates of ice loss at the terminus of Tasman Glacier. NZ Global Planet Chang 22(1–4):79–91CrossRefGoogle Scholar
  92. Racoviteanu A, Manley WF, Arnaud Y, Williams M (2007) Evaluating digital elevation models for glaciological applications: an example from Nevado Coropuna Peruvian Andes. Global Planet Chang 59(1–4):110–125CrossRefGoogle Scholar
  93. Racoviteanu AE, Arnaud Y, Williams MW, Ordonez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54(186):499–510CrossRefGoogle Scholar
  94. Reynard E, Coratza P (2007) Geomorphosites and geodiversity: a new domain of research. Geografica Helvetica 62:138–139CrossRefGoogle Scholar
  95. Rossi S, Diolaiuti G, Forasacco E, Pelfini M, Smiraglia C, Spreafico P (2003) Evidenze geomorfologiche della più recente espansione glaciale correlabile all’episodio freddo degli anni ’50–’70 del XX secolo sulle Alpi Lombarde. In: Motta M, Biancotti A (eds) Risposta dei processi geomorfologici alle variazioni ambientali. Glauco Brigati, Genova, pp 377–395Google Scholar
  96. Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31, L13215. doi: 10.1029/2004GL020255 CrossRefGoogle Scholar
  97. Senese A, Diolaiuti G, Mihalcea C, Smiraglia C (2010) Evoluzione meteorologica sulla lingua di ablazione del Ghiacciaio dei Forni, gruppo Ortles-Cevedale (Parco Nazionale dello Stelvio, Lombardia) nel periodo 2006–2008 [Meteorological evolution upon the Forni tongue of ablation, Ortles-Cevedale group (Stelvio National Park, Lombardy), during 2006–2008]. Bollettino Della Società Geografica Italiana XIII(34):845–864 (in Italian)Google Scholar
  98. Senese A, Diolaiuti G, Mihalcea C, Smiraglia C (2012) Energy and mass balance of Forni Glacier Stelvio National Park, Italian Alps from a 4-year meteorological data record. Arct Antarct Alp Res 44(1):122–134CrossRefGoogle Scholar
  99. Serrano E, Ruiz-Flano P (2007) Geodiversity: a theoretical and applied concept. Geografica Helvetica 62:140–147CrossRefGoogle Scholar
  100. Servizio Glaciologico Lombardo (SGL) (1992) Ghiacciai in Lombardia [Glaciers in Lombardy]. Bolis, Bergamo (in Italian)Google Scholar
  101. Smiraglia C (1989) The medial moraines of Ghiacciaio dei Forni, Valtellina, Italy: morphology and sedimentology. J Glaciol 35(119):81–84CrossRefGoogle Scholar
  102. Smiraglia C (1995) Il Ghiacciaio dei Forni in Valfurva. Sentiero Glaciologico del Centenario [The Forni glacier in Valfurva. Glaciological track for the centenary]. Lyasis, Sondrio (in Italian)Google Scholar
  103. Smiraglia C, Diolaiuti G (2001) A new method for sustainable ecotourism in protected mountain environment areas: the glacier trails in the Lombardy Alps. Geotema 14:42–45Google Scholar
  104. Smiraglia C, Diolaiuti G (2011) Epiglacial morphology. In: Singh VP, Haritashya UK, Singh P (eds) Encyclopedia of snow ice and glaciers. Springer, BerlinGoogle Scholar
  105. Stoppani A (1908) Il Bel Paese. Cogliati LF, MilanoGoogle Scholar
  106. Thompson LG, Thompson EM, Brecher H, Davis M, Leo’n B, Les D, Lin PN, Mashiotta T, Mountain K (2006) Abrupt tropical climate change: past and present. PNAS 103(28):10536–10543CrossRefGoogle Scholar
  107. Turchetti B, Buzzini P, Goretti M, Branda E, Vaughan-Martini A, Diolaiuti G, D’Agata C, Smiraglia C (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83CrossRefGoogle Scholar
  108. Vögtle T, Schilling KJ (1999) Digitizing maps. In: Bähr H-P, Vögtle T (eds) GIS for environmental monitoring. Schweizerbart, Stuttgart, pp 201–216Google Scholar
  109. Volo Italia (2003) Program ““it2003”™/TerraItaly™2003”. Available at
  110. Volo Italia (2007) Program ““it2007”™/TerraItaly™2007”. Available at
  111. Wang W, Van Gelder PHAJM, Vrijling JK (2005) Trend and stationarity analysis for streamflow processes of rivers in Western Europe in the 20th century. Proceedings of the IWA International Conference on Water Economics, Statistics, and Finance Rethymno, Greece, 8–10 JulyGoogle Scholar
  112. Watson RT, Haeberli W (2004) Environmental threats, mitigation strategies and high mountain areas. Ambio Special Report, Royal Colloquium: Mountain Areas, A Global Resource 13:2–10Google Scholar
  113. Wood F (1988) Global alpine glacier trends 1960s to 1980s. Arct Antarct Alp Res 20:404–413CrossRefGoogle Scholar
  114. Zemp M, Kääb A, Hoelzle M, Haeberli W (2005) GIS-based modelling of the glacial sediment balance. Zeitschrift für Geomorphologie Suppl 138:113–129Google Scholar
  115. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33, L13504CrossRefGoogle Scholar
  116. Zwolinski Z (2004) Geodiversity. In: Goudie AS (ed) Encyclopaedia of geomorphology, 1st edn. Routledge, London, pp 417–418Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Carlo D’Agata
    • 1
  • Daniele Bocchiola
    • 2
    • 3
    Email author
  • Davide Maragno
    • 1
  • Claudio Smiraglia
    • 1
    • 3
  • Guglielmina Adele Diolaiuti
    • 1
    • 3
  1. 1.Dipartimento di Scienze della Terra “A. Desio”Università degli Studi di MilanoMilanItaly
  2. 2.DICA Politecnico di MilanoMilanItaly
  3. 3.EVK2CNR CommitteeBergamoItaly

Personalised recommendations