Skip to main content

Advertisement

Log in

Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Present-day (1979–2003) and future (2075–2099) simulations of mean and extreme rainfall and temperature are examined using data from the Meteorological Research Institute super-high-resolution atmospheric general circulation model. Analyses are performed over the 20-km model grid for (1) a main Caribbean basin, (2) sub-regional zones, and (3) specific Caribbean islands. Though the model’s topography underestimates heights over the eastern Caribbean, it captures well the present-day spatial and temporal variations of seasonal and annual climates. Temperature underestimations range from 0.1 °C to 2 °C with respect to the Japanese Reanalysis and the Climatic Research Unit datasets. The model also captures fairly well sub-regional scale variations in the rainfall climatology. End-of-century projections under the Intergovernmental Panel on Climate Change SRES A1B scenario indicate declines in rainfall amounts by 10–20 % for most of the Caribbean during the early (May–July) and late (August–October) rainy seasons relative to the 1979–2003 baselines. The early dry season (November–January) is also projected to get wetter in the far north and south Caribbean by approximately 10 %. The model also projects a warming of 2–3 °C over the Caribbean region. Analysis of future climate extremes indicate a 5–10 % decrease in the simple daily precipitation intensity but no significant change in the number of consecutive dry days for Cuba, Jamaica, southern Bahamas, and Haiti. There is also indication that the number of hot days and nights will significantly increase over the main Caribbean basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang ATC, Ferraro RR, Xie P, Janowiak JE, Rudolf B, Schneider U, Curtis S, Bolvin DT, Gruber A, Susskind J, Arkin PA, Nelkin EJ (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Article  Google Scholar 

  • Angeles ME, Gonzalez JE, Erickson DJ, Hernández JL (2007) Predictions of future climate change in the Caribbean region using global general circulation models. Int J Climatol 27:555–569. doi:10.1002/joc.1416

    Article  Google Scholar 

  • Bamber JL, Riccardo EM, Riva BL, Vermeersen A, LeBrocq Anne M (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 15 May 2009: 901–903. [doi:10.1126/science.1169335]

  • Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A:57–73

    Google Scholar 

  • Campbell JD, Taylor MA, Stephenson TS, Watson RA, Whyte FS (2010) Future climate of the Caribbean from a regional climate model. Int J Climatol. doi:10.1002/joc.2200

  • Chen AA, Chadee DD, Rawlins SC (2006) Climate change impact on dengue: the Caribbean experience. University of the West Indies, pp 13-24 (ISBN 976-41-0210-7)

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Easterling DR, Karl TR, Mason EH, Hughes PY, Bowman DP (1996) United States Historical Climatology Network (U.S. HCN) Monthly Temperature and Precipitation Data. ORNL/CDIAC-87, NDP-019/R3. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gamble DW, Curtis S (2008) Caribbean precipitation: review, model, and prospect. Prog Phys Geogr 32(3):265–276

    Article  Google Scholar 

  • Giannini A, Kushnir Y, Cane MA (2000) Inter-annual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J Climate 13:297–311

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L8707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Guyana Hydrometeorological Service, cited (2007) Guyana’s climate. [Available online at http://www.hydromet.gov.gy/climate.html]

  • Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys Res Lett 36:L10707. doi:10.1029/2009GL037998

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: Synthesis Report. In: Watson RT, the Core Writing Team (eds) A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, p 996

  • Iwasaki T, Yamada S, Tada K (1989) A parameterization scheme of orographic gravity wave drag with two different vertical partitionings, part I: Impacts on medium-range forecasts. J Meteorol Soc Jpn 67:11–27

    Google Scholar 

  • Jury M, Malmgrem BA, Winter A (2007) Subregional precipitation climate of the Caribbean and relationships with ENSO and NAO. J Geophys Res 112. doi:10.1029/2006JD007541

  • Kitoh A, Ose T, Kurihara K, Kusunoki S, Sugi M, KAKUSHIN Team-3 Modeling Group (2009) Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN program: results of preliminary experiments. Hydrol Res Lett 3:49–53. doi:10.3178/hrl.3.49

    Article  Google Scholar 

  • Kitoh A, Kusunoki S, Nakaegawa T (2011) Climate change projections over South America in the late twenty-first century with the 20-km and 60-km mesh MRI-AGCM. J Geophys Res 116(D06105):21. doi:10.1029/2010JD014920

    Google Scholar 

  • Kusunoki S (2010) Global warming projection with 20-km mesh global atmospheric model. Meteorological Research Institute, Climate Research Department, 1-1 Nagamine Tsukuba, Ibaraki 305-0052, JAPAN. E-mail: skusunok@mri-jma.go.jp. Personal Communication

  • Kusunoki S, Mizuta R (2008) Future changes in the Baiu rain band projected by a 20-km mesh global atmospheric model: sea surface temperature dependence. Sci Online Lett Atmos (SOLA) 4:85–88. doi:10.2151/sola.2008-022

    Google Scholar 

  • Kusunoki S, Yoshimura J, Yoshimura H, Noda A, Oouchi K, Mizuta R (2006) Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J Meteorol Soc Jpn 84:581–611

    Article  Google Scholar 

  • Kusunoki S, Yoshimura J, Yoshimura H, Mizuta R, Oouchi K, Noda A (2008) Global warming projection by an atmospheric global model with 20-km grid. J Disaster Res 3(1):4–14

    Google Scholar 

  • Kusunoki S, Mizuta R, Matsueda M (2011) Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Clim Dyn. doi:10.1007/s00382-011-1000-x [html]

  • Lewsey C, Cid G, Kruse E (2004) Assessing climate change impacts on coastal infrastructure in the Eastern Caribbean. Mar Policy 28:393–409

    Article  Google Scholar 

  • Martin ER, Schumacher C (2011) The Caribbean Low-Level Jet and Its Relationship with Precipitation in IPCC AR4 Models. J Climate 24:5939–5950

    Google Scholar 

  • Martis A, Van Oldenborgh GJ, Burgers G (2002) Predicting rainfall in the Dutch Caribbean—more than El Niño? Int J Climatol 22:1219–1234

    Article  Google Scholar 

  • Maurer EP, Adam JC, Wood AW (2009) Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol Earth Syst Sci 13:183–194

    Article  Google Scholar 

  • McSweeney C, New M, Lizcano G (2008) UNDP Climate Change Country Profiles. School of Geography and the Environment, University of Oxford, Website, 164–191

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  • Mizuta R, Coauthors (2006) 20-km-mesh global climate simulations using JMA-GSM model–mean climate states. J Meteorol Soc Jpn 84: 165–185

  • Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. SOLA 6:073–076

    Article  Google Scholar 

  • Murakami H, Wang B (2010) Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J Climate 23:2699–2721

    Article  Google Scholar 

  • Murakami H, Mizuta R, Shindo E (2011a) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn. doi:10.1007/s00382-011-1223-x

  • Murakami H, Wang B, Kitoh A (2011b) Future change of western North Pacific typhoons: projections by a 20-km-mesh global atmospheric model. J Climate 24:1154–1169

    Article  Google Scholar 

  • Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett 30:2275. doi:10.1029/2003GL018625

    Article  Google Scholar 

  • New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J Climate 12:829–856

    Article  Google Scholar 

  • New MG, Hulme M, Jones PD (2000) Representing twentieth-century space-time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Article  Google Scholar 

  • Nurse LA, Sem G (2001) Small Island States. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Xiasosu D (eds) Climate change 2001––the scientific basis. Contribution of Working Group 1 to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda A (2006) Tropical cyclone climatology in a global warming climate as simulated in a 20km mesh global atmospheric model: Frequency and intensity analysis. J Meteorol Soc Jpn 84:259–276. doi:10.2151/jmsj.84.259

    Article  Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network temperature database. Bull Am Meteorol Soc 78(12):2837–2849

    Article  Google Scholar 

  • Peterson TC et al (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107(D21):4601. doi:10.1029/2002JD002251

    Article  Google Scholar 

  • Pulwarty RS, Nurse LA, Trotz UO (2010) Caribbean islands in a changing climate. Environment 52:16–27

    Article  Google Scholar 

  • Randall D, Pan D-M (1993) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr No. 46. Am Meteor Soc 137–144

  • Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn. doi:10.1007/s00382-007-0359-1

  • Rauscher SA, Kucharski F, Enfield DB (2011) The role of regional SST warming variations in the drying of Meso-America in future climate projections. J Climate 24:2003–2016

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Sahay R (2005) Stabilization, debt & fiscal policy in the Caribbean IMF Working Paper WP/05/26, Washington

  • Sato N, Sellers PJ, Randall DA, Schneider EK, Shukla J, Kinder JL III, Hou Y-T, Albertazzi E (1989) Effects of implementing the simple biosphere model (SiB) in a general circulation model. J Atmos Sci 46:2257–2282

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Delcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–53

    Article  Google Scholar 

  • Shibata K, Aoki T (1989) An infrared radiative scheme for the numerical models of weather and climate. J Geophys Res 94:14 923–14 943

    Article  Google Scholar 

  • Shibata K, Uchiyama A (1992) Accuracy of the delta-four-stream approximation in inhomogeneous scattering atmospheres. J Meteorol Soc Jpn 70:1097–1109

    Google Scholar 

  • Simpson MC, Scott D, Harrison M, Silver N, O’Keeffe E, Sim R, Harrison S, Taylor M, Lizcano G, Rutty M, Stager H, Oldham J, Wilson M, New M, Clarke J, Day OJ, Fields N, Georges J, Waithe R, McSharry P (2010) Quantification and magnitude of losses and damages resulting from the impacts of climate change: modelling the transformational impacts and costs of sea level rise in the Caribbean (summary document). United Nations Development Programme (UNDP), Barbados

    Google Scholar 

  • Singh B (1997a) Climate changes in the greater and southern Caribbean. Int J Climatol 17:1093–1114

    Article  Google Scholar 

  • Singh B (1997b) Climate-related global changes in the southern Caribbean: Trinidad and Tobago. Glob Planet Chang 15:93–111

    Article  Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Quart J Roy Meteor Soc 116:435–460

    Google Scholar 

  • Spence JM, Taylor MA, Chen AA (2004) The effect of concurrent sea-surface temperature anomalies in the tropical Pacific and Atlantic on Caribbean rainfall. Int J Climatol 24:1531–1541

    Article  Google Scholar 

  • Stephenson TS, Chen AA, Taylor MA (2007) Toward the development of prediction models for the primary Caribbean dry season, accepted. Theor Appl Climatol 92:87–101. doi:10.1007/s00704-007-0308-2

    Article  Google Scholar 

  • Taylor MA, Stephenson TS, Owino A, Chen AA, Campbell JD (2011) Tropical gradient influences on Caribbean rainfall. J Geophys Res 116:D00Q08. doi:10.1029/2010JD015580

    Article  Google Scholar 

  • Taylor MA, Whyte FS, Stephenson TS, Campbell JD (2012) Why dry? Investigating the future evolution of the Caribbean low level jet to explain projected Caribbean drying. Int J Climatol doi:10.1002/joc.3461

  • Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070

    Article  Google Scholar 

  • Vose RS, Schmoyer Rl, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid J (1992) The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041, 325 pp. [Available from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831.]

  • Wehner MF, Smith RL, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme precipitation events in a global atmospheric model. Clim Dyn 34:241–247. doi:10.1007/s00382-009-0656-y

    Article  Google Scholar 

  • Whyte FS, Taylor MA, Stephenson TS, Campbell JD (2007) Features of the Caribbean low level jet. Int J Climatol. doi:10.1002/joc.1510

  • Yoshimura H, Matsumura T (2003) A semi-Lagrangian scheme conservative in the vertical direction. CAS/JSC WGNE Res Act Atmos Ocean Model 33:319–320

    Google Scholar 

  • Yun K-S, Shin S-H, Ha K-J, Kitoh A, Kusunoki S (2008) East Asian precipitation change in the global warming climate simulated by a 20-km mesh AGCM. Asia Pac J Atmos Sci 44:233–247

    Google Scholar 

  • Zhao M, Held I, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J Climate 1450(22). doi:10.1175/2009JCLI3049.1

Download references

Acknowledgments

Many thanks to the Meteorological Research Institute (MRI) of Japan. The visit to MRI was funded by the Caribbean Community Climate Change Centre and the World Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor C. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, T.C., Sealy, A.M., Stephenson, T.S. et al. Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model. Theor Appl Climatol 113, 271–287 (2013). https://doi.org/10.1007/s00704-012-0779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0779-7

Keywords

Navigation