Skip to main content

Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania

Abstract

In the last decades, droughts are a recurrent phenomena in many regions of the world, especially in the subtropics and mid-latitudes, affecting more and more the society. Aridity indices are often used to identify regions prone to that phenomenon. In this paper, we used data recorded in 30 locations in the extra-Carpathian areas of Romania over the period 1961–2007. The De Martonne aridity index (I DM) and the Pinna combinative index (I P) were employed in order to identify critical areas in the most important agricultural regions of the country. Monthly, seasonal, annual, and winter wheat and maize growing season datasets of I DM and annual values of I P were calculated. The trends were identified using the Mann–Kendall test and Sen’s slope, while ordinary Kriging technique was employed for interpolation. The main findings are that the most vulnerable to semi-aridity are the southeastern regions, especially during the warm period of the year, and that for Romania, the use of I DM is more appropriate compared to I P.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adnan S, Haider S (2012) Classification and assessment of aridity in Pakistan by using different aridity indices. ftp://ftp.wmo.int/Documents/PublicWeb/arep/Weather_Mod_Bali/ENV%20bruntjes.chalon/ENV.Adnan_Pakistan_paper1.pdf. Accessed 23 April 2012

  2. Apaydin H, Kemal Sonmez F, Ersoy Yildirim Y (2004) Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim Res 28:31–40

    Article  Google Scholar 

  3. Badea L, Gastescu P, Velcea VA et al. (1983) Geografia Romaniei, vol. 1, Geografia Fizica. Editura Academiei Republicii Socialiste Romania, Bucharest

  4. Baltas E (2007) Spatial distribution of climatic indices in northern Greece. Meteorol Appl 14:69–78. doi:10.1002/met.7

    Article  Google Scholar 

  5. Ben-Gai T, Bitan A, Manes A, Alpert P (1994) Long-term changes in annual rainfall patterns in southern Israel. Theor Appl Climatol 49(2):59–67. doi:10.1007/BF00868190

    Article  Google Scholar 

  6. Bogdan O, Niculescu E (1999) Riscurile climatice din Romania. Saga International Bucuresti

  7. Borga M, Vizzaccaro A (1997) On the interpolation of hydrologic variables: formal equivalence of multiquadratic surface fitting and kriging. J Hydrol 195:160–171

    Article  Google Scholar 

  8. Bozinovic F, Rojas JM, Broitman BR, Vasquez RA (2009) Basal metabolism is correlated with habitat productivity among populations of degus (Octodon degus). Comp Biochem Physiol Mol Integr Physiol 152(4):560–564. doi:10.1016/j.cbpa.2008.12.015

    Article  Google Scholar 

  9. Busuioc A, Caian M, Cheval S, Bojariu R, Boroneant C, Baciu M, Dumitrescu A (2010) Variabilitatea si schimbarea climei in Romania. Pro Universitaria, Bucharest

  10. Campling P, Gobin A, Feyen J (2001) Temporal and spatial rainfall analysis across a humid tropical catchment. Hydrol Process 15:359–375

    Article  Google Scholar 

  11. Childs C (2004) Interpolating surfaces in ArcGIS Spatial Analyst, ArcUser. July–September, p 35. www.esri.com/geostatisticalanalyst

  12. Cook ER, Woodhouse CA, Mark EC, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306(5698):1015–1018

    Article  Google Scholar 

  13. Coscarelli R, Gaudio R, Caloiero T (2004) Climatic trends: an investigation for a Calabrian basin (southern Italy), the basis of civilization—water science? Proceedings of the UNESCO/IAHS/1WHA Symposium, Rome, December 2003. 1AI1S Publ 286:255–266

  14. Croitoru AE, Chitoroiu B, Iancu I (2011a) Precipitation analysis using Mann–Kendall test and WASP cumulated curve in southeastern Romania. Stud UBB Geograp 1:49–58

    Google Scholar 

  15. Croitoru AE, Holobâcă I-H, Burada C, Moldovan F (2011b) Sunshine duration in Western Romanian Plain. Collegium Geographicum 8, Special Edition. Proceedings Book of the Energia Transylvaniae International Conference on Solar, Wind and Bioenergy. Abel Publishing House Cluj-University Press, pp 51–57

  16. Croitoru AE, Holobaca IH, Lazar C, Moldovan F, Imbroane A (2012) Air temperature trend and the impact on winter wheat phenology in Romania. Clim Chang 111(2):393–410. doi:10.1007/s10584-011-0133-6

    Article  Google Scholar 

  17. Cufar K, De Luis M, Eckstein D, Kajfez-Bogataj L (2008) Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. Int J Biometeorol 52(7):607–615. doi:10.1007/s00484-008-0153-8

    Article  Google Scholar 

  18. de Martonne Em (1920) Géographie physique (Physical geography), (Third edn) Armand Colin. Paris, France

  19. Deniz A, Toros H, Incecik S (2011) Spatial variations of climate indices in Turkey. Int J Climatol 31:394–403. doi:10.1002/joc.2081

    Article  Google Scholar 

  20. Dragota CS, Dumitrascu M, Grigorescu I, Kucsicsa Gh. (2011) The climatic water deficit in South Oltenia using the Thornthwaite method. Forum Geografic. Studii şi cercetări de geografie şi protecţia mediului, 10(1)/June, pp 140–148. doi:10.5775/fg.2067-4635.2011.032.i

  21. ECA&D project (2012) Trend maps. Available at www.eca.knmi.nl. Accessed 30 April 2012

  22. Fillaux J, Santillan G, Magnaval JF, Jensen O, Larrieu E, Sobrino-Becaria CD (2007) Epidemiology of toxocariasis in a steppe environment: the Patagonia Study. Am J Trop Med Hyg 76(6):1144–1147

    Google Scholar 

  23. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

  24. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. ESRI, Redlands, CA

  25. Kafle HK, Bruins HJ (2009) Climatic trends in Israel 1970–2002: warmer and increasing aridity inland. Clim Chang 96:63–77. doi:10.1007/s10584-009-9578-2

    Article  Google Scholar 

  26. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

  27. Kutiel H, Paz S (1998) Sea level pressure departures in the Mediterranean and their relationship with monthly rainfall conditions in Israel. Theor Appl Climatol 60:93–109

    Article  Google Scholar 

  28. Liu X, Zheng H, Zhang M, Liu C (2011) Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J Geogr Sci 21(4):594–608. doi:10.1007/s11442-011-0866-1

    Article  Google Scholar 

  29. Lungu M, Panaitescu L, Niţă S (2011) Aridity, climatic risk phenomenon in Dobrudja. Present Environment and Sustainable Development 5 (1):179–190

    Google Scholar 

  30. Maheras P, Xoplaki E, Kutiel H (1999) Wet and dry monthly anomalies across the Mediterranean Basin and their relationship with circulation, 1860–1990. Theor Appl Climatol 64:189–199

    Article  Google Scholar 

  31. Mann HB (1945) Non-parametric tests against trend. Econometrica 13: 245–259

    Google Scholar 

  32. Matheron G (1962) Traité de géostatistique appliquée, vol. 14 of Mémoires du Bureau de Recherches Géologique et Minières. Editions Technique, Paris

  33. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration of time scales. Eighth Conference on Applied Climatology, American Meteorological Society, January 17–23, 1993, Anaheim, CA, pp 179–186

  34. McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. Ninth Conference on Applied Climatology, American Meteorological Society, January 15–20, 1995, Dallas TX, pp 233–236

  35. Micu D (2009) Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorol Atmos Phys 105(1–2):1–16. doi:10.1007/s00703-009-0035-6

    Article  Google Scholar 

  36. Mureşan T, Croitoru AE (2009) Considerations on fog phenomenon in north-western Romania. Studia UBB Geographia LIV(1):35–44

    Google Scholar 

  37. Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric For Meteorol 92:211–225

    Article  Google Scholar 

  38. NCDC (2012) Climate of 2012—June, U.S. Palmer drought indices. http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/palmer.html Accessed 25 July 2012

  39. Nedelea A, Comanescu L, Oprea R (2009) The ecoclimatic indexes specific for the Arges Valley (Fagaras Mountains, the Southern Carpathians, Romania). Int J Phys Sci 4(12):796–805

    Google Scholar 

  40. Onder D, Aydin M, Berberoglu S, Onder S, Yano T (2009) The use of aridity index to assess implications of climatic change for land cover in Turkey. Turk J Agric For 33:305–314

    Google Scholar 

  41. Palmer W (1965) Meteorological Drought. Research paper no.45, U.S. Department of Commerce Weather Bureau. Available online by the NOAA National Climatic Data Center at http://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf. Accessed 2 June 2012

  42. Paltineanu C, Tanasescu N, Chitu E, Mihailescu IF (2007a) Relationships between the De Martonne aridity index and water requirements of some representative crops: a case study from Romania. Int Agrophysics 21:81–93

    Google Scholar 

  43. Paltineanu CR, Mihailescu IF, Seceleanu I, Dragota C, Vasenciuc F (2007b) Using aridity indices to describe some climate and soil features in Eastern Europe: a Romanian case study. Theor Appl Climatol 90:263–274. doi:10.1007/s00704-007-0295-3

    Article  Google Scholar 

  44. Paltineanu CR, Mihalescu IF, Seceleanu I, Dragota CS, Vasenciuc F (2007c) Ariditatea, seceta, evapotranspiraţia şi cerinţele de apă ale culturilor agricole în România. Ovidius University Press, Constanţa

    Google Scholar 

  45. Paltineanu CR, Mihailescu F, Prefac Z, Dragota C, Vasenciuc F, Nicola C (2009) Combining the standardized precipitation index and climatic water deficit in characterizing droughts: a case study in Romania. Theor Appl Climatol 97:219–233. doi:10.1007/s00704-008-0061-1

    Article  Google Scholar 

  46. Paltineanu CR, Chitu E, Mateescu E (2012) New trends for reference evapotranspiration and climatic water deficit. Int Agrophys 26:159–165. doi:10.2478/v10247-012-0023-9

    Google Scholar 

  47. Radinović D, Ćurić M (2009) Deficit and surplus of precipitation as a continuous function of time. Theor Appl Climatol 98:197–200. doi:10.1007/s00704-009-0104-2

    Article  Google Scholar 

  48. Salmi T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates – the Excel template application MAKESENS. Publications on Air Quality 31: Report code FMI-AQ-31. http://www.fmi.fi/kuvat/MAKESENSMANUAL.pdf. Accessed 10 Jan 2008

  49. Sandu I, Pescaru VI, Poiana I et al. (2008) Clima Romaniei. Editura Academiei Romane, Bucharest

  50. Shahid S (2008) Spatial and temporal characteristics of droughts in the western part of Bangladesh. Hydrol Process 22:2235–2247. doi:10.1002/hyp.6820

    Article  Google Scholar 

  51. Shahid S (2010) Spatio-temporal variation of aridity and dry period in term of irrigation demand in Bangladesh. American-Eurasian J Agric Environ Sci 7(4):386–396

    Google Scholar 

  52. Shifteh Some’e B, Ezani A, Tabari H (2012) Spatiotemporal trends of aridity index in arid and semi-arid regions of Iran. Theor Appl Climatol. doi:10.1007/s00704-012-0650-x

  53. Tabari H, Aghajanloo M-B (2012) Temporal pattern of monthly aridity index in Iran with considering precipitation and evapotranspiration trends. Int J Climatol. doi:10.1002/joc.3432

  54. Tabari H, Aeini A, Hosseinzadeh Talaee P, Shifteh Some’e B (2011) Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol Process 26:500–512. doi:10.1002/hyp.8146

    Article  Google Scholar 

  55. Tabari H, Abghani H, Hosseinzadeh Talaee P (2012) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process. doi:10.1002/hyp. 8460

  56. Topor N, Stoica C (1965) Tipuri de circulatie si centri de actiune atmosferica deasupra Europei. C.S.A. Institutul Meteorologic, Bucharest

    Google Scholar 

  57. Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. Eur Water 9/10:3–11

    Google Scholar 

  58. Turkes M (2003) Spatial and temporal variations in precipitation and aridity index series of Turkey. In: Bölle H-J (ed) Mediterranean climate: variability and trends. Springer, Berlin, pp 181–213

    Chapter  Google Scholar 

  59. van Beers WCM, Kleijnen JPC (2004) Kriging interpolation in simulation: a survey. Proceedings of the 2004 Winter Simulation Conference, Ingalls RG, Rossetti MD, Smith JS, Peters BA (eds), Washington, DC, December

  60. Wu S, Yin Y, Zheng D, Yang Q (2006) Moisture conditions and climate trends in China during the period 1971–2000. Int J Climatol 26:193–206. doi:10.1002/joc.1245

    Article  Google Scholar 

  61. Zambakas J (1992) General climatology. Department of Geology, National & Kapodistrian University of Athens, Athens

    Google Scholar 

  62. Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y, Kanani R (2011) Impacts of climate change on runoffs in East Azerbaijan, Iran. Global Planet Change 78(3–4):137–146. doi:10.1016/j.gloplacha.2011.06.003

    Article  Google Scholar 

  63. Zhang Q, Xu C-Y, Zhang Z (2009) Observed changes of drought/wetness episodes in the Pearl River Basin, China, using the standardized precipitation index and aridity index. Theor Appl Climatol 98(1–2):89–99

    Article  Google Scholar 

  64. Zhao D, Zheng D, Wu S, Wu Z (2007) Climate changes in northeastern China during last four decades. Chin Geogr Sci 17(4):317–324. doi:10.1007/s11769-007-0317-1

    Article  Google Scholar 

  65. Zheng D (2000) A study on the eco-geographic regional system of China. FAO FRA2000 Global Ecological Zoning Workshop: Cambridge, UK, Forest Resources Assessment Programme of FAO Working Paper 26, Rome, pp 43–53

Download references

Acknowledgments

The authors acknowledge the National Meteorological Administration in Romania for the monthly data provided. This paper was partially supported by POSDRU CUANTUMDOC “Doctoral Studies for European Performances in Research and Inovation” ID79407 project funded by the European Social Found and the Romanian Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adina-Eliza Croitoru.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Croitoru, AE., Piticar, A., Imbroane, A.M. et al. Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theor Appl Climatol 112, 597–607 (2013). https://doi.org/10.1007/s00704-012-0755-2

Download citation

Keywords

  • Kriging
  • Winter Wheat
  • Romania
  • Ordinary Kriging
  • Aridity Index