Theoretical and Applied Climatology

, Volume 110, Issue 4, pp 549–553 | Cite as

Recent advances in mountain climate research

Special Issue

Abstract

The paper provides a brief overview of recent advances in selected areas of mountain climate research. It addresses the contrasting vertical precipitation gradients in the Alps and in central Asia, snow line in the Alps, orographic precipitation in North America, the Mesoscale Alpine Programme wind studies, automatic weather stations in mountains, satellite remote sensing of glacier changes, and temperature change at high elevations. The evidence for altitudinal differences in the temperature response to recent warming is discussed.

References

  1. Aizen VB et al (1997) Climatic and hydrologic changes in the Tien Shan Central Asia. J Climate 10:1393–1404CrossRefGoogle Scholar
  2. Auer I, Böhm R, Leymüller M, Schöner W (2002) Das Klima des Sonnblicks Österreich. Beiträge Meteorologie u, Geophysik, 28, Zentralansalt Meteorologie u. Geodynamik, Vienna, 305 pp. and CDGoogle Scholar
  3. Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150CrossRefGoogle Scholar
  4. Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, Cambridge, p 506CrossRefGoogle Scholar
  5. Dettinger M, Redmond K (2005) Winter orographic precipitation ratios in the Sierra Nevada—large-scale atmospheric circulations and hydrologic consequences. J Hydromet 5:1102–1116CrossRefGoogle Scholar
  6. Diaz HF, Eischeid JK (2007) Disappearing “Alpine Tundra” Köppen climatic type in the western United States. Geophys Res Lett 34:L18707CrossRefGoogle Scholar
  7. Drobinski P, Bastin S, Dusek J, Zängl G, Flamant PH (2006) Flow splitting at the bifurcation between two valleys: idealized numerical simulations in comparison with the Mesoscale Alpine Programme observations. Meteorol Atmos Phys 92:285–306CrossRefGoogle Scholar
  8. Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900Google Scholar
  9. Getker MI (1985) Snow resources of the mountain area in Central Asia. PhD thesis, Moscow: USSR Academy of Sciences, Institute of Geography. 44 pp. (in Russian)Google Scholar
  10. Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Climate 10:288–296CrossRefGoogle Scholar
  11. Grubisic V, Doyle JD (2006) Terrain-induced Rotor Experiment (T-REX). Boston, MD: American Meteorological Society, 12th Conference on Mountain Meteorology, Paper 9.1. 6 ppGoogle Scholar
  12. Grubišić V, Doyle JD, Kuettner J, Mobbs S, Smith RB, Whiteman CD, Dirks R, Czyzyk S, Cohn SA, Vosper S, Weissmann M, Haimov S, de Wekker SJ, Pan L (2008) The Terrain-Induced Rotor Experiment: a field campaign overview including observational highlights. Bull Amer Meteor Soc 89:1513–1533CrossRefGoogle Scholar
  13. Hantel M, Maurer C (2011) The median winter snowline on the Alps. Met Zeit 20:267–275CrossRefGoogle Scholar
  14. Hardy DR, Vuille M, Braun C, Keimig F, Bradley RS (1998) Annual and daily meteorological cycles at high altitude on a tropical mountain. Bull Amer Met Soc 79:1899–1913CrossRefGoogle Scholar
  15. Hardy DR, Braun C, Vuille M, Bradley RS (2004) High-elevation weather stations on glaciers in the Tropics and High Arctic. In: Automatic weather stations on glaciers: lessons to be learned, extended abstracts. Proceedings of a workshop, 28–31 March 2004, Pontresina (Switzerland). pp 52–55Google Scholar
  16. Holmboe J, Klieforth H (1957) Investigations of mountain lee waves and airflow over the Sierra Nevada. Final Rep., Contract AF19(604)-728, University of California, No. 133606, Dept. of Meteorology, University of California, Los Angeles, CA, p 290Google Scholar
  17. Houze RA Jr (2012) Orographic effects on precipitating clouds. Rev Geophys 50(RG1001):47Google Scholar
  18. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature. doi:10.1038.nature10847
  19. Kääb A, Paul F, Maisch M, Hoelzle M, Haeberli W (2002) The new remote sensing derived Swiss glacier inventory: II. First results. Ann Glaciol 34:362–366CrossRefGoogle Scholar
  20. Kang E-S, Cheng GD, Lan YC, Jin HJ (1999) A model for simulating the responses of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes. Sci China D42(suppl):52–63Google Scholar
  21. Lundquist JD, Minder JR, Neinman PJ, Sukovich E (2010) Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J Hydromet 11:1141–1156CrossRefGoogle Scholar
  22. Mayr GJ, Armi L, Zängl G, Durran DR, Flamant C, Gabersek S, Mobbs S, Ross A, Weissmann M (2007) Gap flows: results from the Mesoscale Alpine Programme. Quart J Roy Met Soc 133:881–896CrossRefGoogle Scholar
  23. Meehl GA, Stocker TP (Lead authors) (2007) Global climate projections. In: Solomon S, Qin, D-H (eds.) Climate change 2007: Working Group I: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. 10.6 Sea level change in the 21st centuryGoogle Scholar
  24. Minder JR, Durran DR, Roe GR (2011) Mesoscale controls on the mountainside snow line. J Atmos Sci 68:2110–2127CrossRefGoogle Scholar
  25. Mölg T, Hardy DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J Geophys Res 109:D16104. doi:10.1029/2003JD004338 CrossRefGoogle Scholar
  26. Pepin NC, Lundquist J (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi:10.1029/2008GL034026 CrossRefGoogle Scholar
  27. Pepin NC, Seidel DJ (2005) A global comparison of surface and free–air temperatures at high elevations. J Geophys Res 110:D03104CrossRefGoogle Scholar
  28. Pepin NC, Daly JC, Lundquist J (2011) The influence of surface versus free- air decoupling on temperature trend patterns in the western United States. J Geophys Res 116(D10109):16Google Scholar
  29. Racoviteanu AE, Paul F, Raup R, Khalsa SJS, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land and Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals Glaciol 53:53–69Google Scholar
  30. Rangwala I, Miller JR (2010) Twentieth century temperature trends in Colorado’s San Juan Mountains. Arct Antarct Alp Res 42:89–97CrossRefGoogle Scholar
  31. Schwarb M, Daly C, Frei C, Schär C (2001) Mittlere jährliche Niederschlagshöhen im europäischen Alpenraum. In: Gruppe für Hydrologie, Universität Bern: Hydrologischer Atlas der Schweiz. Berne: Landeshydrologie, Bundesamt für Wasser und Geologie, plate 2.6Google Scholar
  32. Shahgedanova M, Nosenko G, Khromova T, Muraveyev A (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: an assessment using remote sensing and PRECIS regional climate model. J Geophys Res 115:D16107CrossRefGoogle Scholar
  33. Spreafico M, Weingartner R (2005) The hydrology of Switzerland. Selected aspects and results. Reports, Bundesamt f. Wasser u. Geologie (BWG) Water Series No. 7, Bern, Switzerland, p 139Google Scholar
  34. Volkert H, Guterman T (2007) Inter-domain cooperation for mesoscale atmospheric laboratories: the Mesoscale Alpine Programme as a rich case study. Quart J Roy Met Soc 135:949–967CrossRefGoogle Scholar
  35. Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27:3885–3888CrossRefGoogle Scholar
  36. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Chang 59:75–99CrossRefGoogle Scholar
  37. Wunderle S, Droz M, Kleindienst H (2002) Spatial and temporal analysis of the snow line in the Alps based on NOAA-AVHRR data. Geogr Helvet 57:170–183Google Scholar
  38. Xie A, Qin D, Ren J, Xiao C, Qn X, Hou S, Yang X, Jiang Y (2007) A short communication on meteorological observations at Mt. Everest 6523 m. Atmosfera 20:373–376Google Scholar
  39. Zachariassen J, Zeller K, Nikolov N, McClelland T (2003) A review of the Forest Service Remote Automated Weather Station (RAWS) network. Gen. Tech. Rep. RMRS-GTR-119. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p 153Google Scholar
  40. Zängl G, Hornsteiner M (2007) The exceptional Alpine south foehn event of 14–16 November 2002: a case study. Met Atmos Phys 98:217–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.National Snow and Ice Data Center (NSIDC), Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderUSA

Personalised recommendations