Skip to main content

Advertisement

Log in

Recent advances in mountain climate research

  • Special Issue
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The paper provides a brief overview of recent advances in selected areas of mountain climate research. It addresses the contrasting vertical precipitation gradients in the Alps and in central Asia, snow line in the Alps, orographic precipitation in North America, the Mesoscale Alpine Programme wind studies, automatic weather stations in mountains, satellite remote sensing of glacier changes, and temperature change at high elevations. The evidence for altitudinal differences in the temperature response to recent warming is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aizen VB et al (1997) Climatic and hydrologic changes in the Tien Shan Central Asia. J Climate 10:1393–1404

    Article  Google Scholar 

  • Auer I, Böhm R, Leymüller M, Schöner W (2002) Das Klima des Sonnblicks Österreich. Beiträge Meteorologie u, Geophysik, 28, Zentralansalt Meteorologie u. Geodynamik, Vienna, 305 pp. and CD

  • Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58(207):134–150

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, Cambridge, p 506

    Book  Google Scholar 

  • Dettinger M, Redmond K (2005) Winter orographic precipitation ratios in the Sierra Nevada—large-scale atmospheric circulations and hydrologic consequences. J Hydromet 5:1102–1116

    Article  Google Scholar 

  • Diaz HF, Eischeid JK (2007) Disappearing “Alpine Tundra” Köppen climatic type in the western United States. Geophys Res Lett 34:L18707

    Article  Google Scholar 

  • Drobinski P, Bastin S, Dusek J, Zängl G, Flamant PH (2006) Flow splitting at the bifurcation between two valleys: idealized numerical simulations in comparison with the Mesoscale Alpine Programme observations. Meteorol Atmos Phys 92:285–306

    Article  Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900

    Google Scholar 

  • Getker MI (1985) Snow resources of the mountain area in Central Asia. PhD thesis, Moscow: USSR Academy of Sciences, Institute of Geography. 44 pp. (in Russian)

  • Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Climate 10:288–296

    Article  Google Scholar 

  • Grubisic V, Doyle JD (2006) Terrain-induced Rotor Experiment (T-REX). Boston, MD: American Meteorological Society, 12th Conference on Mountain Meteorology, Paper 9.1. 6 pp

  • Grubišić V, Doyle JD, Kuettner J, Mobbs S, Smith RB, Whiteman CD, Dirks R, Czyzyk S, Cohn SA, Vosper S, Weissmann M, Haimov S, de Wekker SJ, Pan L (2008) The Terrain-Induced Rotor Experiment: a field campaign overview including observational highlights. Bull Amer Meteor Soc 89:1513–1533

    Article  Google Scholar 

  • Hantel M, Maurer C (2011) The median winter snowline on the Alps. Met Zeit 20:267–275

    Article  Google Scholar 

  • Hardy DR, Vuille M, Braun C, Keimig F, Bradley RS (1998) Annual and daily meteorological cycles at high altitude on a tropical mountain. Bull Amer Met Soc 79:1899–1913

    Article  Google Scholar 

  • Hardy DR, Braun C, Vuille M, Bradley RS (2004) High-elevation weather stations on glaciers in the Tropics and High Arctic. In: Automatic weather stations on glaciers: lessons to be learned, extended abstracts. Proceedings of a workshop, 28–31 March 2004, Pontresina (Switzerland). pp 52–55

  • Holmboe J, Klieforth H (1957) Investigations of mountain lee waves and airflow over the Sierra Nevada. Final Rep., Contract AF19(604)-728, University of California, No. 133606, Dept. of Meteorology, University of California, Los Angeles, CA, p 290

  • Houze RA Jr (2012) Orographic effects on precipitating clouds. Rev Geophys 50(RG1001):47

    Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature. doi:10.1038.nature10847

  • Kääb A, Paul F, Maisch M, Hoelzle M, Haeberli W (2002) The new remote sensing derived Swiss glacier inventory: II. First results. Ann Glaciol 34:362–366

    Article  Google Scholar 

  • Kang E-S, Cheng GD, Lan YC, Jin HJ (1999) A model for simulating the responses of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes. Sci China D42(suppl):52–63

    Google Scholar 

  • Lundquist JD, Minder JR, Neinman PJ, Sukovich E (2010) Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J Hydromet 11:1141–1156

    Article  Google Scholar 

  • Mayr GJ, Armi L, Zängl G, Durran DR, Flamant C, Gabersek S, Mobbs S, Ross A, Weissmann M (2007) Gap flows: results from the Mesoscale Alpine Programme. Quart J Roy Met Soc 133:881–896

    Article  Google Scholar 

  • Meehl GA, Stocker TP (Lead authors) (2007) Global climate projections. In: Solomon S, Qin, D-H (eds.) Climate change 2007: Working Group I: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. 10.6 Sea level change in the 21st century

  • Minder JR, Durran DR, Roe GR (2011) Mesoscale controls on the mountainside snow line. J Atmos Sci 68:2110–2127

    Article  Google Scholar 

  • Mölg T, Hardy DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J Geophys Res 109:D16104. doi:10.1029/2003JD004338

    Article  Google Scholar 

  • Pepin NC, Lundquist J (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi:10.1029/2008GL034026

    Article  Google Scholar 

  • Pepin NC, Seidel DJ (2005) A global comparison of surface and free–air temperatures at high elevations. J Geophys Res 110:D03104

    Article  Google Scholar 

  • Pepin NC, Daly JC, Lundquist J (2011) The influence of surface versus free- air decoupling on temperature trend patterns in the western United States. J Geophys Res 116(D10109):16

    Google Scholar 

  • Racoviteanu AE, Paul F, Raup R, Khalsa SJS, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land and Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals Glaciol 53:53–69

    Google Scholar 

  • Rangwala I, Miller JR (2010) Twentieth century temperature trends in Colorado’s San Juan Mountains. Arct Antarct Alp Res 42:89–97

    Article  Google Scholar 

  • Schwarb M, Daly C, Frei C, Schär C (2001) Mittlere jährliche Niederschlagshöhen im europäischen Alpenraum. In: Gruppe für Hydrologie, Universität Bern: Hydrologischer Atlas der Schweiz. Berne: Landeshydrologie, Bundesamt für Wasser und Geologie, plate 2.6

  • Shahgedanova M, Nosenko G, Khromova T, Muraveyev A (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-20th century: an assessment using remote sensing and PRECIS regional climate model. J Geophys Res 115:D16107

    Article  Google Scholar 

  • Spreafico M, Weingartner R (2005) The hydrology of Switzerland. Selected aspects and results. Reports, Bundesamt f. Wasser u. Geologie (BWG) Water Series No. 7, Bern, Switzerland, p 139

  • Volkert H, Guterman T (2007) Inter-domain cooperation for mesoscale atmospheric laboratories: the Mesoscale Alpine Programme as a rich case study. Quart J Roy Met Soc 135:949–967

    Article  Google Scholar 

  • Vuille M, Bradley RS (2000) Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys Res Lett 27:3885–3888

    Article  Google Scholar 

  • Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Chang 59:75–99

    Article  Google Scholar 

  • Wunderle S, Droz M, Kleindienst H (2002) Spatial and temporal analysis of the snow line in the Alps based on NOAA-AVHRR data. Geogr Helvet 57:170–183

    Google Scholar 

  • Xie A, Qin D, Ren J, Xiao C, Qn X, Hou S, Yang X, Jiang Y (2007) A short communication on meteorological observations at Mt. Everest 6523 m. Atmosfera 20:373–376

    Google Scholar 

  • Zachariassen J, Zeller K, Nikolov N, McClelland T (2003) A review of the Forest Service Remote Automated Weather Station (RAWS) network. Gen. Tech. Rep. RMRS-GTR-119. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p 153

  • Zängl G, Hornsteiner M (2007) The exceptional Alpine south foehn event of 14–16 November 2002: a case study. Met Atmos Phys 98:217–238

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Wolfgang Schöner for the invitation to present a review talk at the International Conference on Climate Change in High Mountain Regions on the occasion of the 125th Anniversary of the Sonnblick Observatory. I also thank Dr. Ernest Rudel for comments that led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, R.G. Recent advances in mountain climate research. Theor Appl Climatol 110, 549–553 (2012). https://doi.org/10.1007/s00704-012-0695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0695-x

Keywords

Navigation