Theoretical and Applied Climatology

, Volume 111, Issue 3–4, pp 547–558 | Cite as

Modeling of changes in thermal bioclimate: examples based on urban spaces in Freiburg, Germany

Original Paper


The Place of the Old Synagogue is a popular place in the city center of Freiburg, a medium-sized city in southwest Germany. It is going to be redesigned soon. In this paper the impact of urban street design and surface material on human thermal comfort is analyzed using the example of the Place of the Old Synagogue. The models SkyHelios, RayMan, and ENVI-met were applied to quantify and qualify the changes. All three models are freely available. Their combination allows analysis of development in long-term conditions, as well as changes in spatial distribution of thermal comfort, as well as of heat stress in summer. Results show that the models can provide valuable information. About the Place of the Old Synagogue, quantitative results show that the period with heat stress will become longer, while the intensity of heat stress increases. The spatial results show that the most significant changes are due to changes in shading. Nevertheless, an increase in thermal stress up to 10 °C is calculated for areas, where ground coverage changes from grass to pavement.


  1. Asaeda T, Ca VT (2000) Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Build Environ 35:363–375CrossRefGoogle Scholar
  2. Bruse M (1999) Die Auswirkungen kleinskaliger Umweltgestaltung auf das Mikroklima. Entwicklung des prognostischen numerischen Modells ENVI-met zur Simulation der Wind-, Temperatur-, und Feuchtverteilung in städtischen Strukturen. Dissertation, Univ. Bochum, GermanyGoogle Scholar
  3. Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energ Build 35:69–76CrossRefGoogle Scholar
  4. Fanger PO (1972) Thermal comfort. McGraw-Hill, New YorkGoogle Scholar
  5. Gulyás Á, Unger J, Matzarakis A (2006) Assessment of the microclimatic and thermal comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41:1713–1722CrossRefGoogle Scholar
  6. Hämmerle M, Gál T, Unger J, Matzarakis A (2011a) Comparison of models calculating the sky view factor used for urban climate investigations. Theor Appl Climatol 105:521–527CrossRefGoogle Scholar
  7. Hämmerle M, Gál T, Unger J, Matzarakis A (2011b) Introducing a script for calculating the sky view factor used for urban climate investigations. Acta Climatol Chorol 44–45:83–92Google Scholar
  8. Höppe PR (1984) Die Energiebilanz des Menschen (dissertation). Wissenschaftliche Mitteilungen des Meteorologischen Instituts der Universität München 49Google Scholar
  9. Höppe PR (1999) The physiological equivalent temperature—a universal index for the bioclimatological assessment of the thermal environment. Int J Biometeorol 43:71–75CrossRefGoogle Scholar
  10. Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Cent Eur J Geosci 3(1):90–100CrossRefGoogle Scholar
  11. Lin TP, Matzarakis A, Hwand RL (2010a) Shading effect on long-term outdoor thermal comfort. Build Environ 45:863–870Google Scholar
  12. Lin TP, Matzarakis A, Hwang RL, Huang YC (2010b) Effect of pavements albedo on long-term outdoor thermal comfort. In: Matzarakis A, Mayer H, Chmielewski F-M (eds) Proceedings of the 7th Conference on Biometeorology. Ber Meteorol Inst Univ Freiburg 20:498–504Google Scholar
  13. Lopes A, Lopes S, Matzarakis A, Alcoforado MJ (2011) Summer sea breeze influence on human comfort during hot periods in Funchal (Madeira Island). Meteorologische Zeitschrift 20:553–564Google Scholar
  14. Matzarakis A (2001) Die thermische Komponente des Stadtklimas. Albert-Ludwigs University of Freiburg, Freiburg, Germany, No. 6Google Scholar
  15. Matzarakis A, Matuschek O (2011) Sky View Factor as a parameter in applied climatology – Rapid estimation by the SkyHelios Model. Meteorologische Zeitschrift 20:39–45Google Scholar
  16. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Newslett 18:7–10Google Scholar
  17. Matzarakis A, Mayer H (2008) Importance of urban meteorological stations—the example of Freiburg, Germany. Ber Meteorol Inst Univ Freiburg 17:119–128Google Scholar
  18. Matzarakis A, Endler C (2009) Physiologically equivalent temperature and climate change in Freiburg. Eighth Symposium on the Urban Environment. American Meteorological Society, Phoenix, AZ, 10–15 January 2009, 4.2, 1–8Google Scholar
  19. Matzarakis A, Endler C (2010) Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. Int J Biometeorol 54:479–483CrossRefGoogle Scholar
  20. Matzarakis A, Herrmann J (2010) Influence of mean radiant temperature on thermal comfort of humans in idealized urban environments. Ninth Symposium on the Urban Environment of the American Meteorological Society, 1–6 August 2010, Keystone, CO, USAGoogle Scholar
  21. Matzarakis A, Rutz F (2010) Application of the RayMan model in urban environments. Ninth Symposium on the Urban Environment of the American Meteorological Society, 1–6 August 2010, Keystone, CO, USAGoogle Scholar
  22. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334CrossRefGoogle Scholar
  23. Matzarakis A, Mahlau F, Mayer H (2000) Online—visualisierung von meteorologischen daten im internet—meteorologische stadtstation freiburg. Fachtagung Mettools IV:150–152Google Scholar
  24. Matzarakis A, Röckle R, Richter CJ, Höfl HC, Steinicke W, Streifeneder M, Mayer H (2008) Planungsrelevante bewertung des stadtklimas—am beispiel von Freiburg im Breisgau. Gefahrstoffe–Reinhaltung der Luft 68:334–340Google Scholar
  25. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments—basics of the RayMan model. Int J Biometeorol 54:131–139CrossRefGoogle Scholar
  26. Mayer H (1989) Workshop “Ideales Stadtklima” am 26. Oktober 1988 in München. DMG-Mitteilungen 3:52–54Google Scholar
  27. Mayer H (1993) Urban bioclimatology. Experientia 49:957–963CrossRefGoogle Scholar
  28. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49CrossRefGoogle Scholar
  29. Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol Z 17:241–250CrossRefGoogle Scholar
  30. Nastos P, Matzarakis A (2006) Weather impacts on the respiratory infections in Athens, Greece. Int J Biometeorol 50:358–369CrossRefGoogle Scholar
  31. Nastos P, Matzarakis A (2008) The effect of air temperature and the thermal index PET on mortality in Athens, Greece. Proceedings 18th International Congress on Biometeorology, Tokyo, Japan, 22–26 September, 1–4Google Scholar
  32. Nübler W (1979) Konfiguration und Genese der Wärmeinsel der Stadt Freiburg. Freiburger Geographische Hefte, 16Google Scholar
  33. Röckle R, Hermsdörfer K, Richter CJ (2010) Mikroklimatische Untersuchung Platz der Alten Synagoge im Zuge der Stadtbahnplanung mit Umgestaltung Kronenstrasse, Werthmannstrasse, Rotteckring und Friedrichring. iMA Richter & Röckle GmbH & Co. KG, 09-12-05-FR IIGoogle Scholar
  34. Rudloff H (1993) Beiträge zum Klima Freiburgs. Lingg Druck, FreiburgGoogle Scholar
  35. VDI (1998) Environmental meteorology, methods for the human-biometeorological evaluation of climate and air quality for the urban and regional planning at regional level: Part I. Climate. VDI/DIN—Handbuch Reinhaltung der Luft. Band 1b, DüsseldorfGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Meteorological InstituteAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations