Skip to main content
Log in

Watershed-wide trend analysis of temperature characteristics in Karun-Dez watershed, southwestern Iran

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Trend estimation of climatic characteristics for a watershed is required to determine developing compatible strategies related to design, development, and management of water resources. In this study, the trends of the annual maximum (T max), minimum (T min), and mean (T mean) air temperature; temperature anomaly (T anomaly); and diurnal temperature range (DTR) time series at 13 meteorological stations located in the Karun-Dez watershed were analyzed using the Mann–Kendall and linear regression trend tests. The pre-whitening method was used to eliminate the influence of serial correlation on the Mann–Kendall test. The result showed increasing trends in the T min, T mean, and T anomaly series at the majority of stations and decreasing trend in the T max and DTR series. A geographical analysis of the trends revealed a broad warming trend in most of the watershed, and the cooling trends were observed only in the southern parts. Furthermore, the geographical pattern of the trends in the T mean and T anomaly series was similar, and the T max data did not show any dominant trend for the whole watershed. This study provides temperature change scenarios that may be used for the design of future water resource projects in the watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arora M, Goel NK, Singh P (2005) Evaluation of temperature trends over India. J Hydrol Sci 50:81–93

    Article  Google Scholar 

  • Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1999) Temporal and spatial trends of temperature patterns in Israel. Theor Appl Climatol 64:163–177

    Article  Google Scholar 

  • Bonsal BR, Zhang X, Vincent LA, Hogg WD (2001) Characteristics of daily extreme temperatures over Canada. J Climate 14:1959–1976

    Article  Google Scholar 

  • Brunetti M, Lentini L, Maugeri M, Nanni T, Auer I, Böhm B, Schöner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225

    Article  Google Scholar 

  • Chen B, Chao WC, Liu X (2003) Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study. Clim Dyn 20:401–413

    Google Scholar 

  • Domroes M, El-Tantawi A (2005) Recent temporal and spatial temperature changes in Egypt. Int J Climatol 25:51–63

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Amer Meteor Soc 81:417–426

    Article  Google Scholar 

  • Frauenfeld OW, Zhang T, Serreze MC (2005) Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J Geophys Res 110:D02101

    Article  Google Scholar 

  • Freiwan M, Kadioglu M (2008) Climate variability in Jordan. Int J Climatol 28:69–89

    Article  Google Scholar 

  • Ghahraman B (2006) Time trend in the mean annual temperature of Iran. Turk J Agric For 30:439–448

    Google Scholar 

  • Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian river basins. Curr Sci 90:346–353

    Google Scholar 

  • Hansen JR, Lebedeff S (1987) Global trends of measured surface temperature. J Geophys Res 92(13):13345–13372

    Article  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz Ju, Russell G, Schmidt GA, Tausnev N (2005) Earth's energy imbalance: confirmation and implications. Science 308:1431–1435. doi:10.1126/science.1110252

    Article  Google Scholar 

  • Heino R et al (1999) Progress in the study of climate extremes in northern and central Europe. Clim Change 42:151–181

    Article  Google Scholar 

  • Hingane LS, Rupa Kumar K, Ramanamurthy BV (1985) Long term needs of surface air temperature in India. Int J Climatol 5:521–528

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. WaterResour Res 1:107–121

    Article  Google Scholar 

  • Hirsch RM, Alexander RB, Smith RA (1991) Selection of methods for the detection and estimation of trends in water quality. Water Resour Res 20:803–813

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Huth R (1999) Testing for trends in data unevenly distributed in time. Theor Appl Climatol 64:151–162

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT et al (eds) Cambridge University Press, pp 944

  • IPCC (2007) Summary for policymakers. In: Solomon S et al (eds) Climate change 2007. The physical science basis. Cambridge University Press, UK

    Google Scholar 

  • Jones PD, Raper SCB, Bradley RS, Diaz HF, Kelly PM, Wigley TML (1986a) Northern hemisphere surface air temperature variations: 1851-1984. J Climate Appl Meteor 25:161–179

    Article  Google Scholar 

  • Jones PD, Raper SCB, Wigley TML (1986b) Southern hemisphere surface air temperature variations: 1851-1984. J Appl Met 25:1213–1230

    Article  Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Kahya E, Kalayci S (2004) Trend analysis of stream flow in Turkey. J Hydrol 289:128–144

    Article  Google Scholar 

  • Karl TR, Knight RW, Baker B (2000) The record breaking global temperature of 1997 and 1998: evidence for an increase in the rate of global warming. Geophys Res Lett 27:719–722

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London, p 202

    Google Scholar 

  • Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res. doi:10.1029/2005JD006316, 111 D16105

  • Kothawale DR, Rupa Kumar K (2005) One the recent changes in surface temperature trends over India. Geophys Res Lett 32:L18714. doi:10.101029/2005GL023528

    Article  Google Scholar 

  • Kruger AC, Shongwe S (2004) Temperature trends in South Africa: 1960–2003. Int J Climatol 24:1929–1945

    Article  Google Scholar 

  • Kundzewich ZW, Robson AJ (2004) Change detection in hydrological records—a review of the methodology. Hydrol Sci J 49(1):7–19

    Article  Google Scholar 

  • Lal M (2001) Climatic change—implications for India's water resources. J Indian Water Resour Soc 21:101–119

    Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

    Article  Google Scholar 

  • Lund R, Seymour L, Kafadar K (2001) Temperature trends in the United States. Environmetrics 12:673–690

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290

    Article  Google Scholar 

  • Mirza MQ, Warrick RA, Ericksen NJ, Kenny GJ (1998) Trends and persistence in precipitation in Ganges, Brahmaputra and Meghna river basins. Hydrol Sci J 43(6):845–858

    Article  Google Scholar 

  • Mitchell JM, Dzezerdzeeskii B, Flohn H, Hofmeyer WL, Lamb HH, Rao KN, Wallen CC (1996) Climatic change, WMO Technical Note 79, WMO No, 195, TP-100. Geneva, pp 79

  • Pant GB, Rupakumar K, Borgaonkar HP (1999) In: Dash SK, Bahadur J (eds) Climate and its long-term variability over the western Himalaya during the past two centuries. The Himalayan environment. New Age International (P) Limited, New Delhi, pp 172–184

    Google Scholar 

  • Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026

    Article  Google Scholar 

  • Plummer N et al (1999) Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim Change 42:182–202

    Article  Google Scholar 

  • Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469

    Article  Google Scholar 

  • Rupakumar K, Krishnakumar K, Pant GB (1994) Diurnal asymmetry of surface air temperature trends over India. Geophys Res Lett 15:677–680

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Singh P, Bengtsson L (2003) Effect of warmer climate on the depletion of snow covered area in the Satluj Basin in the western Himalayan region. Hydrol Sci J 48(3):413–426

    Article  Google Scholar 

  • Singh N, Sontakke NA (2002) On climatic fluctuations and environmental changes of the Indo-Gangetic plains, India. Clim Change 52:287–313

    Article  Google Scholar 

  • Singh P, Kumar V, Thomas T, Arora M (2008) Basin-wide assessment of temperature trends in northwest and central India. Hydrol Sci J 53(2):421–433

    Article  Google Scholar 

  • Soltani E, Soltani A (2008) Climatic change of Khorasan, North-East of Iran, during 1950–2004. Res JEnviron Sci 2(5):316–322

    Google Scholar 

  • Srivastava HN, Dewan BN, Dikshit SK, Rao GSP, Singh SS, Rao KR (1992) Decadal trends in climate over India. Mausam 43:7–20

    Google Scholar 

  • Storch HV (1995) Misuses of statistical analysis in climate research. In: Storch HV, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin, pp 11–26

    Google Scholar 

  • Tabari H, Hosseinzadeh Talee P (2011a) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorol Atmos Phys 111:121–131

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talee P (2011b) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob Planet Chang 79:1–10

  • Tabari H, Hosseinzadeh Talee P (2011c) Temporal variability of precipitation over Iran: 1966–2005. J Hydrol 396:313–320

    Article  Google Scholar 

  • Tabari H, Marofi S (2011) Changes of pan evaporation in the west of Iran. Water Resour Manag 25:97–111

    Article  Google Scholar 

  • Tabari H, Aeini A, Hosseinzadeh Talaee P, Shifteh Somee B (2011a) Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol Process. doi:10.1002/hyp.8146

  • Tabari H, Marofi S, Aeini A, Hosseinzadeh Talaee P, Mohammadi K (2011b) Trend analysis of reference evapotranspiration in the western half of Iran. Agr Forest Meteorol 151:128–136

    Article  Google Scholar 

  • Tabari H, Shifteh Somee B, Rezaeian Zadeh M (2011c) Testing for long-term trends in climatic variables in Iran. Atmos Res 100:132–140

    Article  Google Scholar 

  • Trenberth KE, Josey SA (2007) In: Solomon S et al (eds) Observations: surface and atmospheric climate change, climate change 2007: the physical science basis: contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Turkes M, Sumer UM, Demir I (2002) Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999. Int J Climatol 22:947–977

    Article  Google Scholar 

  • Vinnikov KY, Groisman PY, Lugina KM (1990) Empirical data on global climate changes (temperature and precipitation). J Climate 3:662–677

    Article  Google Scholar 

  • Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1996. Theor Appl Climatol 75:15–27

    Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38:395–429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safar Marofi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marofi, S., Soleymani, S., Salarijazi, M. et al. Watershed-wide trend analysis of temperature characteristics in Karun-Dez watershed, southwestern Iran. Theor Appl Climatol 110, 311–320 (2012). https://doi.org/10.1007/s00704-012-0662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0662-6

Keywords

Navigation