Theoretical and Applied Climatology

, Volume 111, Issue 1–2, pp 79–96 | Cite as

Revisiting forest impact on atmospheric water vapor transport and precipitation

  • Anastassia M. Makarieva
  • Victor G. Gorshkov
  • Bai-Lian Li
Original Paper


Using a robust global precipitation database, we analyze coast-to-interior seasonal precipitation distributions over the world’s major forest regions. We find that the active functioning of boreal forests in summer is associated with an intense ocean-to-land moisture transport, which declines in winter when forest functioning is minimal. This seasonal switch manifests itself as a change in the exponential scale length of precipitation distribution, which exceeds 15 × 103 km in summer but decreases to (3–4) × 103 km in winter. In equatorial rainforests, which are photosynthetically active throughout the year, annual precipitation remains approximately constant, while the coefficient of variation of monthly precipitation significantly declines toward the continent interior. Precipitation over forest during the periods of active forest functioning is always higher than over the adjacent ocean. Such precipitation patterns support the biotic pump concept according to which forest cover drives the ocean-to-land atmospheric moisture transport on a continental scale.


Boreal Forest Congo Moisture Transport Precipitation Distribution Congo Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the Angelini et al. team of authors who readily provided us with the requested information on the geography of the precipitation transects they studied. We thank the reviewers for their helpful comments on the manuscript and also Peter Bunyard, Jan Čermák, Andrei Nefiodov, Antonio Nobre, Jan Pokorny, and Douglas Sheil for numerous and valuable discussions.

Supplementary material

704_2012_643_MOESM1_ESM.doc (1.6 mb)
ESM 1 (DOC 1621 kb)


  1. Álvarez-Villa OD, Veléz JJ, Poveda G (2011) Improved long-term mean annual rainfall fields for Colombia. Int J Climatol 31:2194–2212. doi: 10.1002/joc.2232 CrossRefGoogle Scholar
  2. Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342. doi: 10.1126/science.1092779 CrossRefGoogle Scholar
  3. Angelini IM, Garstang M, Davis RE, Hayden B, Fitzjarrald DR, Legates DR, Greco S, Macko S, Connors V (2011) On the coupling between vegetation and the atmosphere. Theor Appl Climatol 105:243–261. doi: 10.1007/s00704-010-0377-5 CrossRefGoogle Scholar
  4. Anyamba A, Tucker CJ, Eastman JR (2001) NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int J Remote Sens 22:1847–1859. doi: 10.1080/0143116001002915 CrossRefGoogle Scholar
  5. Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113:G00B01. doi: 10.1029/2007JG000644 CrossRefGoogle Scholar
  6. Beresford-Jones D, Arce Torres S, Whaley O, Chepstow-Lusty A (2009) The role of Prosopis in ecological and landscape change in the Samaca Basin, lower Inca Valley, South Coast Peru from the Early Horizon to the Late Intermediate Period. Lat Am Antiq 20:303–332Google Scholar
  7. Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17:1517–1528. doi:10.1175/1520-0442(2004)017<1517%3ARBWVPA>2.0.CO%3B2CrossRefGoogle Scholar
  8. Cao S, Li C, Shankman D, Wang C, Wang X, Zhang H (2010) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth Sci Rev 104:240–245. doi: 10.1016/j.earscirev.2010.11.002 CrossRefGoogle Scholar
  9. Chikoore H, Jury MR (2010) Intraseasonal variability of satellite-derived rainfall and vegetation over Southern Africa. Earth Interact 14:1–26. doi: 10.1175/2010EI267.1 CrossRefGoogle Scholar
  10. Cook BI, Seager R, Miller RL (2011) Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Clim Dyn 36:2339–2355. doi: 10.1007/s00382-010-0807-1 CrossRefGoogle Scholar
  11. Cuartas LA, Tomasella J, Nobre AD, Hodnett MG, Waterloo MJ, Múnera JC (2007) Interception water-partitioning dynamics for a pristine rainforest in Central Amazonia: marked differences between normal and dry years. Agr Forest Meteorol 145:69–83. doi: 10.1016/j.agrformet.2007.04.008 CrossRefGoogle Scholar
  12. Davidson E, Lefebvre PA, Brando PM, Ray DM, Trumbore SE, Solorzano LA, Ferreira JN, Bustamante MMC, Nepstad DC (2011) Carbon inputs and water uptake in deep soils of an eastern Amazon forest. Forest Sci 57:51–58Google Scholar
  13. Dubreuil V, Debortoli N, Funatsu B, Nédélec V, Durieux L (2012) Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184:877–891. doi: 10.1007/s10661-011-2006-x CrossRefGoogle Scholar
  14. Ellison D, Futter MN, Bishop K (2012) On the forest cover–water yield debate: from demand- to supply-side thinking. Global Change Biol 18:806–820. doi: 10.1111/j.1365-2486.2011.02589.x CrossRefGoogle Scholar
  15. Espinoza JC, Guyot JL, Ronchail J, Cochonneau G, Naziano F, Fraizy P, Labat D, de Oliveira E, Ordoñez JJ, Vauchel P (2009a) Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J Hydrol 375:297–311. doi: 10.1016/j.jhydrol.2009.03.004 CrossRefGoogle Scholar
  16. Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, de Oliveira E, Pombosa R, Vauchel P (2009b) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594. doi: 10.1002/joc.1791 CrossRefGoogle Scholar
  17. Fitzjarrald DR, Sakai RK, Moraes OLL, Cosme de Oliveira R, Acevedo OC, Czikowsky MJ, Beldini T (2008) Spatial and temporal rainfall variability near the Amazon–Tapajós confluence. J Geophys Res 113:G00B11. doi: 10.1029/2007JG000596 CrossRefGoogle Scholar
  18. Friedl MA, Strahler AH, Hodges J (2010) ISLSCP II MODIS (collection 4) IGBP land cover, 2000–2001. In: Hall FG, Collatz G, Meeson B, Los S, Brown de Colstoun E, Landis D (eds) ISLSCP initiative II collection. Data set. Available on-line ( from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee. doi: 10.3334/ORNLDAAC/968
  19. Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity and conservation. Oxford University Press, OxfordGoogle Scholar
  20. Goessling HF, Reick CH (2011) What do moisture recycling estimates tell us? exploring the extreme case of non-evaporating continents. Hydrol Earth Syst Sci 15:3217–3235. doi: 10.5194/hess-15-3217-2011 CrossRefGoogle Scholar
  21. Gorshkov VG, Makarieva AM, Gorshkov VV (2004) Revising the fundamentals of ecological knowledge: the biota-environment interaction. Ecol Complex 1:17–36. Abstract. PDF (0.3 Mb). doi: 10.1016/j.ecocom.2003.09.002 Google Scholar
  22. Heiblum RH, Koren I, Altaratz O (2011) Analyzing coastal precipitation using TRMM observations. Atmos Chem Phys 11:13201–13217. doi: 10.5194/acp-11-13201-2011 CrossRefGoogle Scholar
  23. Huete AR, Didan K, Shimabukuro YE, Ratana P, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys Res Lett 33:L06405. doi: 10.1029/2005GL025583 CrossRefGoogle Scholar
  24. Keys PW, van der Ent RJ, Gordon LJ, Hoff H, Nikoli R, Savenije HHG (2012) Analyzing precipitation sheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9:733–746. doi: 10.5194/bg-9-733-2012 CrossRefGoogle Scholar
  25. Lane PNJ, Best AE, Hickel K, Zhang L (2005) The response of flow duration curves to afforestation. J Hydrol 310:253–265. doi: 10.1016/j.jhydrol.2005.01.006 CrossRefGoogle Scholar
  26. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127. doi: 10.1002/joc.3370100202 CrossRefGoogle Scholar
  27. Makarieva AM, Gorshkov VG (2006) Interactive comment on “biotic pump of atmospheric moisture as driver of the hydrological cycle on land” by A. M. Makarieva and V. G. Gorshkov. Hydrol Earth Syst Discuss 3: S1705–S1712.
  28. Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033. doi: 10.5194/hess-11-1013-2007 CrossRefGoogle Scholar
  29. Makarieva AM, Gorshkov VG (2010) The biotic pump: condensation, atmospheric dynamics and climate. Int J Water 5:365–385. doi: 10.1504/IJW.2010.038729 CrossRefGoogle Scholar
  30. Makarieva AM, Gorshkov VG (2011) Radial profiles of velocity and pressure for condensation-induced hurricanes. Phys Lett A 375:1053–1058. doi: 10.1016/j.physleta.2011.01.005 CrossRefGoogle Scholar
  31. Makarieva AM, Gorshkov VG, Li B-L (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol Complex 6:302–307. doi: 10.1016/j.ecocom.2008.11.004 CrossRefGoogle Scholar
  32. Makarieva AM, Gorshkov VG, Sheil D, Nobre AD, Li B-L (2010) Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos Chem Phys Discuss 10:24015–24052. doi: 10.5194/acpd-10-24015-2010 CrossRefGoogle Scholar
  33. Makarieva AM, Gorshkov VG, Nefiodov AV (2011) Condensational theory of stationary tornadoes. Phys Lett A 375:2259–2261. doi: 10.1016/j.physleta.2011.04.023 CrossRefGoogle Scholar
  34. Marengo JA (2005) Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget. Clim Dyn 24:11–22. doi: 10.1007/s00382-004-0461-6 CrossRefGoogle Scholar
  35. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703. doi: 10.1029/2011GL047436 CrossRefGoogle Scholar
  36. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B III, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochem Cycles 15:183–206. doi: 10.1029/2000GB001298 CrossRefGoogle Scholar
  37. McVicar TR, Li LT, Van Niel TG, Zhang L, Li R, Yang QK, Zhang XP, Mu XM, Wen ZM, Liu WZ, Zhao YA, Liu ZH, Gao P (2007) Developing a decision support tool for China’s re-vegetation program: simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecol Manage 251:65–81. doi: 10.1016/j.foreco.2007.06.025 CrossRefGoogle Scholar
  38. Millán H, Rodríguez J, Ghanbarian-Alavijeh B, Biondi R, Llerena G (2011) Temporal complexity of daily precipitation records from different atmospheric environments: Chaotic and Lévy stable parameters. Atmos Res 101:879–892. doi: 10.1016/j.atmosres.2011.05.021 CrossRefGoogle Scholar
  39. Murakami S (2009) A new paradigm of forest canopy interception science: the implication of a huge amount of evaporation during rainfall. In: Creighton JD, Roney PJ (eds) Forest canopies: forest production, ecosystem health and climate conditions. Nova, Hauppage, pp 1–28Google Scholar
  40. Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Negrón Juárez RI, Saatchi SS, Hashimoto H, Ichii K, Shabanov NV, Tan B, Ratana P, Privette JL, Morisette JT, Vermote EF, Roy DP, Wolfe RE, Friedl MA, Running SW, Votava P, El-Saleous N, Devadiga S, Su Y, Salomonson VV (2007) Large seasonal swings in leaf area of Amazon rain-forests. Proc Natl Acad Sci 104:4820–4823. doi: 10.1073/pnas.0611338104 CrossRefGoogle Scholar
  41. Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J, Jimenez MS, Morales D (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3:431–444. doi: 10.1002/eco.148 CrossRefGoogle Scholar
  42. Nepstad DC, Carvalho CJR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669. doi: 10.1038/372666a0 CrossRefGoogle Scholar
  43. Oglesby RJ, Sever TL, Saturno W, Erickson DJ III, Srikishen J (2010) Collapse of the Maya: could deforestation have contributed? J Geophys Res 115:D12106. doi: 10.1029/2009JD011942 CrossRefGoogle Scholar
  44. Paiva RCD, Buarque DC, Clarke RT, Collischonn W, Allasia DG (2011) Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data. Geophys Res Lett 38:L04406. doi: 10.1029/2010GL045277 CrossRefGoogle Scholar
  45. Poveda G, Salazar LF (2004) Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sens Environ 93:391–401. doi: 10.1016/j.rse.2004.08.001 CrossRefGoogle Scholar
  46. Poveda G, Álvarez DM, Rueda ÓA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249. doi: 10.1007/s00382-010-0931-y CrossRefGoogle Scholar
  47. Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557. doi: 10.1126/science.1091165 CrossRefGoogle Scholar
  48. Satyamurty P, de Castro AA, Tota J, da Silva Gularte LE, Manzi AO (2010) Rainfall trends in the Brazilian Amazon in the past eight decades. Theor Appl Climatol 99:139–148. doi: 10.1007/s00704-009-0133-x CrossRefGoogle Scholar
  49. Savenije HHG (1995) New definitions for moisture recycling and the relationship with land-use change in the Sahel. J Hydrol 167:57–78. doi: 10.1016/0022-1694(94)02632-L CrossRefGoogle Scholar
  50. Savenije HHG (1996) The runoff coefficient as the key to moisture recycling. J Hydrol 76:219–225. doi: 10.1016/0022-1694(95)02776-9 CrossRefGoogle Scholar
  51. Savenije HHG (2004) The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol Processes 18:1507–1511. doi: 10.1002/hyp.5563 CrossRefGoogle Scholar
  52. Sheil D, Murdiyarso D (2009) How forests attract their rain: an examination of a new hypothesis. Bioscience 59:341–347. doi: 10.1525/bio.2009.59.4.12 CrossRefGoogle Scholar
  53. Tian Y, Peters-Lidard CD (2007) Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys Res Lett 34:L14403. doi: 10.1029/2007GL030787 CrossRefGoogle Scholar
  54. van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525. doi: 10.1029/2010WR009127 CrossRefGoogle Scholar
  55. Verdin KL (2011) ISLSCP II HYDRO1k elevation-derived products. In: Hall FG, Collatz G, Meeson B, Los S, Brown de Colstoun E, Landis D (eds) ISLSCP initiative II collection. Data set. Available on-line ( from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. doi: 10.3334/ORNLDAAC/1007
  56. Williams E et al (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(D20):8082. doi: 10.1029/2001JD000380 CrossRefGoogle Scholar
  57. Williams PA, Funk C, Michaelsen J, Rauscher SA, Robertson I, Wils THG, Koprowski M, Eshetu Z, Loader NJ (2011) Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean Sea surface temperature. Clim Dyn. doi: 10.1007/s00382-011-1222-y
  58. Wu Y-P, Shen Y-P, Li BL (2012) Possible physical mechanism of water vapor transport over Tarim River Basin. Ecol Complex 9:63–70. doi: 10.1016/j.ecocom.2011.12.002 CrossRefGoogle Scholar
  59. Yin X, Gruber A (2010) Validation of the abrupt change in GPCP precipitation in the Congo River Basin. Int J Climatol 30:110–119. doi: 10.1002/joc.1875 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anastassia M. Makarieva
    • 1
  • Victor G. Gorshkov
    • 1
  • Bai-Lian Li
    • 2
  1. 1.Theoretical Physics DivisionPetersburg Nuclear Physics InstituteSt. PetersburgRussia
  2. 2.XIEG-UCR International Center for Arid Land EcologyUniversity of CaliforniaRiversideUSA

Personalised recommendations