Skip to main content
Log in

Data reconstruction and homogenization for reducing uncertainties in high-resolution climate analysis in Alpine regions

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Analysis of climatic series needs pre-processing to attain spatial- and time-consistent homogeneity. The latter, in high-resolution investigations, can rely on the strong correlations among series, which in turn requires a strict fulfilment of the quality standard in terms of completeness. Fifty-nine daily precipitation and temperature series of 50 years from Trentino, northern Italy, were pre-processed for climatic analysis. This study describes: (1) the preliminary gap-filling protocol for daily series, based on geostatistical correlations on both horizontal and vertical domains; (2) an algorithm to reduce inhomogeneity owing to the systematic snowfall underestimation of rain gauges; and (3) the processing protocol to take into account any source of undocumented inhomogeneity in series. This was performed by application of the t test and F-test of R code RHtestV2. This pre-processing shows straightforward results; correction of snowfall measurements re-evaluates attribution of patterns of altitudinal trends in time trends; homogenization increases the strength of the climatic signal and reduces the scattering of time trends, assessed over a few decades, of a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahrens B (2006) Distance in spatial interpolation of daily rain gauge data. Hydrol Earth Syst Sci 10:197–208

    Article  Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675

    Article  Google Scholar 

  • Anselmo V (1998) Manuale di riferimento per la misura al suolo delle grandezze idrometeorologiche. CNR-GNDCI, Roma, p 121

    Google Scholar 

  • Auer I, Boehm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schoener W, Ungersboeck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Mueller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP–historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Beniston M, Rebetez M, Giorgi F, Marinucci MR (1994) An analysis of regional climate-change in Switzerland. Theor Appl Climatol 49:135–159

    Article  Google Scholar 

  • Brugnara Y, Brunetti M, Maugeri M, Nanni T, Simolo C (2011) High-resolution analysis of daily precipitation trends in the central Alps over the last century. Int J Climatol. doi:10.1002/joc.2363

  • Brunetti M, Maugeri M, Nanni T (2000) Variations of temperature and precipitation in Italy from 1866 to 1995. Adv Water Resour 65(3–4):165–174. doi:10.1007/s007040070041

    Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Bohm R, Schoner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225

    Article  Google Scholar 

  • Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32:203–213

    Article  Google Scholar 

  • Ciccarelli N, von Hardenberg J, Provenzale A, Ronchi C, Vargiu A, Pelosini R (2008) Climate variability in north-western Italy during the second half of the 20th century. Glob Planet Chang 63(2–3):185–195

    Article  Google Scholar 

  • Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4(7):689–706

    Article  Google Scholar 

  • Della Marta PM (2006) A method of homogenizing the extremes and mean of daily temperature measurements. J Clim 19(17):4179–4197

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Eccel E, Saibanti S (2007) Inquadramento climatico dell’Altopiano di Lavarone-Vezzena nel contesto generale trentino. Stud Trentini di Sci Nati, Acta Biol 82:111–121

    Google Scholar 

  • Euskirchen ES, McGuire AD, Chapin FS (2007) Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Chang Biol 13(11):2425–2438

    Article  Google Scholar 

  • Groisman PY, Davies TD (2001) Snow cover and the climate system. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology. Cambridge Univ Press, New York, pp 1–44

    Google Scholar 

  • Groisman PY, Karl TR, Knight RW, Stenchikov GL (1994) Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere. J Clim 7(11):1633–1656

    Article  Google Scholar 

  • Ha-Duong M, Swart R, Bernstein L, Petersen A (2007) Uncertainty management in the IPCC: agreeing to disagree. Glob Environ Chang-Hum Policy Dimens 17(1):8–11

    Article  Google Scholar 

  • Hantel M, Ehrendorfer M, Haslinger A (2000) Climate sensitivity of snow cover duration in Austria. Int J Climatol 20(6):615–640

    Article  Google Scholar 

  • Haubner E (2002) I cambiamenti climatici e le Alpi: una relazione specifica. CIPRA, 12 Pp. http://www.cipra.org

  • Jones PD et al (1999) The use of indices to identify changes in climatic extremes. Clim Chang 42(1):131–149

    Article  Google Scholar 

  • Karl TR, Knight RW, Plummer N (1995) Trends in high frequency climate variability in the 20th century. Nature 377(6546):217–220

    Article  Google Scholar 

  • Keller F, Goyette S, Beniston M (2005) Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in Alpine terrain. Clim Chang 72:299–319

    Article  Google Scholar 

  • Le Treut H, Gastineau G, Li L (2008) Uncertainties attached to global or local climate changes. C R Geosci 340(9–10):584–590

    Article  Google Scholar 

  • Loffler J (2007) The influence of micro-climate, snow cover, and soil moisture on ecosystem functioning in high mountains. J Geogr Sci 17(1):3–19

    Article  Google Scholar 

  • Moss RH, Schneider SH (2000) Uncertainties in the IPCC TAR: recommendations to lead authors for more consistent assessment and reporting. IPCC Supporting Material. IPCC, Geneva

    Google Scholar 

  • Ranzi R, Grossi G, Bacchi B (1999) Ten years of monitoring areal snowpack in the Southern Alps using NOAA-AVHRR imagery, ground measurements and hydrological data. Hydrol Process 13(12–13):2079–2095

    Article  Google Scholar 

  • Ranzi R, Grossi G, Gitti A, Taschner S (2010) Energy and mass balance of the Mandrone Glacier (Adamello, Central Alps). Geografia Fisica e Dinamica Quaternaria 33:45–60

    Google Scholar 

  • Reeves J, Chen J, Wang XLL, Lund R, Lu QQ (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46(6):900–915

    Article  Google Scholar 

  • Sevruk B (ed) (1992) Snow cover measurements and areal assessment of precipitation and soil moisture. World Meteorological Organization, operational hydrology report n.35, WMO n.749; Geneva: p. 283

  • Sevruk B (1996) Adjustment of tipping-bucket precipitation gauge measurements. Atmos Res 42(1–4):237–246

    Article  Google Scholar 

  • Simolo C, Brunetti M, Maugeri M, Nanni T (2010) Improving estimation of missing values in daily precipitation series by a probability density function-preserving approach. Int J Climatol 30(10):1564–1576. doi:10.1002/joc.1992

    Google Scholar 

  • Swart R, Bernstein L, Ha-Duong M, Petersen A (2009) Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC. Clim Chang 92(1–2):1–29

    Article  Google Scholar 

  • Tegavarapu RSV, Chandramouli V (2005) Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J Hydrol 312:191–206

    Article  Google Scholar 

  • Timbal B, Fernandez E, Li Z (2009) Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ Model Softw 24(3):341–358

    Article  Google Scholar 

  • Toreti A, Desiato F (2008) Temperature trend over Italy from 1961 to 2004. Theor Appl Climatol 91:51–58

    Article  Google Scholar 

  • Valt M, Cianfarra P (2010) Recent snow cover variability in the Italian Alps. Cold Reg Sci Technol 64(2):146–157

    Article  Google Scholar 

  • Wang XLL (2008a) Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J Appl Meteorol Climatol 47(9):2423–2444

    Article  Google Scholar 

  • Wang XLL (2008b) Penalized maximal F test for detecting undocumented mean shift without trend change. J Atmos Ocean Technol 25(3):368–384

    Article  Google Scholar 

  • Wang XL, Yang F (2007) RHtestV2 user manual. Published online (http://cccma.seos.uvic.ca/ETCCDMI/software.shtml)

  • Wilby R, Charles S, Zorita E, Timbal B, Whetton P, Mearns L (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods, published online, supporting material to the IPCC, 27 pp

  • WMO-World Meteorological Organisation (2010) CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations, instruments and observing methods report n. 102, Geneva, 2010

  • Yan ZW, Jones PD (2008) Detecting inhomogeneity in daily climate series using wavelet analysis. Adv Atmos Sci 25(2):157–163

    Article  Google Scholar 

  • Yang D, Sevruk B, Elomoa E, Golubev V, Goodison B, Gunther T (1994) Wind-induced error on snow measurement: WMO intercomparison results. In: Proc. 23th Int. Conf. Alpine Meteorology-German Weather Service, Annalen der Meteorologie, Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, no. 30:61–64

Download references

Acknowledgments

This study was carried out in the frame of the projects ACE-SAP and ENVIROCHANGE, funded by the Autonomous Province of Trento and of the PRIN 2008 grant “Water resources assessment and management under climate change scenarios in mountain areas”. Thanks to Fondazione E. Mach–CTT (Ufficio GIS), Meteotrentino (PAT), Provincia Autonoma di Bolzano (PAB), ARPA Lombardia, ARPA Veneto for data supply. Thanks to R. De Filippi (Fondazione B. Kessler) and to A. Di Piazza (Fondazione E. Mach) for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Eccel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eccel, E., Cau, P. & Ranzi, R. Data reconstruction and homogenization for reducing uncertainties in high-resolution climate analysis in Alpine regions. Theor Appl Climatol 110, 345–358 (2012). https://doi.org/10.1007/s00704-012-0624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0624-z

Keywords

Navigation