Skip to main content
Log in

Mann–Kendall trend analysis of tropospheric ozone and its modeling using ARIMA

Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The present work reports studies on the spatial distribution of tropospheric ozone extending over both southern and northern hemispheres. This study is based on a univariate approach to the spatial data series obtained at regular spatial intervals. Mann–Kendall's (MK) trend analysis has been carried out to discern the trend within the spatial distribution of the tropospheric ozone, and it has been observed that in all seasons, except monsoon (JJAS), there is a linear trend within the spatial distribution. Studying both monthly and seasonal behavior through autoregressive integrated moving average (ARIMA), it has been revealed that ARIMA (0,2,2) can be used as a representative of the spatially distributed tropospheric ozone over southern and northern hemispheres. The representative model has been confirmed through the study of Willmott's index and prediction yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya N, Kar SC, Mohanty UC, Kulkarni MA, Dash SK (2011) Performance of GCMs for seasonal prediction over India—a case study for 2009 monsoon. Theor Appl Climatol 105:505–520

    Article  Google Scholar 

  • Alexandris D, Varotsos C, Kondratyev KY, Chronopoulos G (1999) On the altitude dependence of solar effective UV. Phys Chem Earth C Sol Terr Planet 24:515–517

    Google Scholar 

  • Bandyopadhyay G, Chattopadhyay S (2007) Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int J Environ Sci Tech 4:141–149

    Google Scholar 

  • Bell N (2005) Impacts of chemistry–aerosol coupling on tropospheric ozone and sulfate simulations in a general circulation model. J Geophys Res 110:D14305

    Article  Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (2007) Time series analysis: forecasting and control, 3 rdth edn. Dorling Kindersley (India) Pvt. Ltd, New Delhi, India

    Google Scholar 

  • Brühl C, Crutzen PJ (1989) On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation. Geophys Res Lett 16(7):703–706. doi:10.1029/GL016i007p00703

    Article  Google Scholar 

  • Cartalıs C, Varotsos C (1994) Surface ozone in Athens, Greece, at the beginning and at the end of the 20th century. Atmos Environ 28:3–8

    Article  Google Scholar 

  • Chattopadhyay S (2007) Prediction of mean monthly total ozone time series—application of radial basis function network. Int J Rem Sens 28:4037–4046

    Article  Google Scholar 

  • Chattopadhyay S, Chattopadhyay G (2008) Comparative study among different neural net learning algorithms applied to rainfall time series. Meteorol Appl 15:273–280

    Article  Google Scholar 

  • Chattopadhyay G, Chattopadhyay S (2010) Univariate approach to the monthly total ozone time series over Kolkata, India: autoregressive integrated moving average (ARIMA) and autoregressive neural network (AR-NN) models. Int J Rem Sens 31:575–583

    Article  Google Scholar 

  • Chattopadhyay S, Jhajharia D, Chattopadhyay G (2011) Univariate modelling of monthly maximum temperature time series over northeast India: neural network versus Yule–Walker equation based approach. Meteorol Appl 18:70–82

    Article  Google Scholar 

  • Delleur JW, Kavvas ML (1978) Stochastic models for monthly rainfall forecasting and synthetic generation. J Appl Meteorol 17:1528–1536

    Article  Google Scholar 

  • Domonkos P, Kysel JY, Piotrowicz K, Petrovic P, Likso T (2003) Variability of extreme temperature events in south–central Europe during the 20th century and its relationship with large-scale circulation. Int J Climatol 23:978–1010

    Article  Google Scholar 

  • Dueñas C, Fernández MC, Cañete S, Carretero J, Liger E (2005) Stochastic model to forecast ground-level ozone concentration at urban and rural areas. Chemosphere 61:1379–1389

    Article  Google Scholar 

  • Edwards DP et al (2003) Tropospheric ozone over the tropical Atlantic: a satellite perspective. J Geophys Res 108(D8):4237. doi:10.1029/2002JD002927

    Article  Google Scholar 

  • Efstathiou M, Varotsos C, Kondratyev KY (1998) An estimation of the surface solar ultraviolet irradiance during an extreme total ozone minimum. Meteorol Atmos Phys 68:171–176

    Article  Google Scholar 

  • Fiore AM, Jason West J, Horowitz LW, Naik V, Daniel Schwarzkopf M (2008) Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J Geophys Res 113:D08307

    Article  Google Scholar 

  • Fishman J, Crutzen P (1978) The origin of ozone in the troposphere. Nature 274:855–858

    Article  Google Scholar 

  • Fishman J, Ramanathan V, Crutzen PJ (1979) Tropospheric ozone and climate. Nature 282:818–820

    Article  Google Scholar 

  • Fishman J, Watson CE, Larsen JC, Logan JA (1990) Distribution of tropospheric ozone determined from satellite data. J Geophys Res 95:3599–3617

    Article  Google Scholar 

  • Hanssen-Bauer I, Førland EJ (1998) Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Clim Res 10:143–153

    Article  Google Scholar 

  • Hingane LS, Patil SD (1996) Total ozone in the most humid monsoon region. Meteorol Atmos Phys 58:215–221

    Article  Google Scholar 

  • James T (1987) Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys Rev A (General Physics) 36:4456–4462. doi:10.1103/PhysRevA.36.4456

    Article  Google Scholar 

  • Jhajharia D, Shrivastava SK, Sarkar D, Sarkar S (2009) Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agr Forest Meteorol 149:763–770

    Article  Google Scholar 

  • Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144

    Article  Google Scholar 

  • Katsambas A, Varotsos CA, Veziryianni G, Antoniou C (1997) Surface solar ultraviolet radiation: a theoretical approach of the SUVRreaching the ground in Athens, Greece. Environ Sci Pollut Res 4:69–73

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1995a) Volcanic eruptions and global ozone dynamics. Int J Rem Sens 16:1887–1895

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1995b) Atmospheric ozone variability in the context of global change. Int J Rem Sens 16:1851–1881

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1996a) Global total ozone dynamics—impact on surface solar ultraviolet radiation variability and ecosystems. Environ Sci Pollut Res 3:205–209

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1996b) Global total ozone dynamics—impact on surface solar ultraviolet radiation variability and ecosystems .1.Global ozone dynamics and environmental safety. Environ Sci Pollut Res 3:153–157

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (2001) Global tropospheric ozone dynamics. Part II: numerical modelling of tropospheric ozone variability. Part I: tropospheric ozone precursors. Environ Sci Pollut Res 8:113–119. doi:10.1007/BF02987304

    Article  Google Scholar 

  • Kumar U, Jain VK (2010) ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch Environ Res Risk Assess 24:751–760. doi:10.1007/s00477-009-0361-8

    Article  Google Scholar 

  • Liao H, Chen W-T, Seinfeld JH (2006) Role of climate change in global predictions of future tropospheric ozone and aerosols. J Geophys Res 111:D12304. doi:10.1029/2005JD006852

    Article  Google Scholar 

  • Londhe AL, Bhosale CS, Kulkarni JR, Kumari BP, Jadhav DB (2003) Space–time variability of ozone over the Indian region for the period 1981–1998. J Geophys Res 108:8781

    Article  Google Scholar 

  • Londhe AL, Padma Kumari B, Kulkarni JR, Jadhav DB (2005) Monsoon circulation induced variability in total column ozone over India. Curr Sci 89:164–167

    Google Scholar 

  • McKenzie R, Smale D, Bodeker G, Claude H (2003) Ozone profile differences between Europe and New Zealand: Effects on surface UV irradiance and its estimation from satellite sensors, J Geophys Res 108(D6), 4179. doi:10.1029/2002JD002770

  • Modarres R, da Silva VPR (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70:344–355

    Article  Google Scholar 

  • Oltmans S, Lefohn A, Galbally I, Scheel E, Bodeker G, Brunke E, Claude H, Tarasick D, Simmonds P, Anlauf K, Schmidlin F, Akagi K, Redondas A (2006) Long-term changes in tropospheric ozone. Atmos Environ 40:3156–3173

    Article  Google Scholar 

  • Pal SK, Mitra S (1999) Neuro-fuzzy pattern recognition: methods in soft computing. Wiley, New York, NY, USA

    Google Scholar 

  • Portmann RW, Solomon S, Fishman J, Olson JR, Kiehl JT, Briegleb B (1997) Radiative forcing of the Earth's climate system due to tropical tropospheric ozone production. J Geophys Res 102(D8):9409–9417. doi:10.1029/96JD04007

    Article  Google Scholar 

  • Prybutok VR, Yi J, Mitchell D (2000) Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations. Eur J Oper Res 122:31–40

    Article  Google Scholar 

  • Sahoo A, Sarkar S, Singh RP, Kafatos M, Summers ME (2005) Declining trend of total ozone column over the northern parts of India. Int J Rem Sens 26:3433–3340

    Article  Google Scholar 

  • Shindell DT, Faluvegi G, Bell N, Schmidt GA (2005) An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys Res Lett 32:L04803. doi:10.1029/2004GL021900

    Article  Google Scholar 

  • Shindell D, Faluvegi G, Lacis A, Hansen J, Ruedy R, Aguilar E (2006) Role of tropospheric ozone increases in 20th-century climate change. J Geophys Res 111:D08302

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Climate 12:2775–2786

    Article  Google Scholar 

  • Sprott JC (2003) Chaos and time series analysis, Oxford University Press.

  • Stevenson DS et al (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res 111:D08301. doi:10.1029/2005JD006338

    Article  Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science 5060:1157–1165

    Article  Google Scholar 

  • Varotsos C, Kalabokas P, Chronopoulos G (1994) Association of the laminated vertical ozone structure with the lower-stratospheric circulation. J Appl Meteorol 33(4):473–476

    Article  Google Scholar 

  • Varotsos CA, Chronopoulos GI, Katsikis S, Sakellariou NK (1995) Further evidence of the role of air-pollution on solar ultraviolet-radiation reaching the ground. Int J RemSens 16:1883–1886

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Xu ZX, Chen YN, Li JY (2004) Impact of climate change on water resources in the Tarim River Basin. Water Resour Manag 18:439–458

    Article  Google Scholar 

  • Xu T, Wu J, Wu Z-S, Li Q (2008) Long-term sunspot number prediction based on EMD analysis and AR model. Chin J Astron Astrophys 8:337–342

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8:369–387

    Article  Google Scholar 

  • Zwiers FW, Storch HV (1995) Taking serial correlation into account in tests of mean. J Climate 8:336–350

    Article  Google Scholar 

Download references

Acknowledgment

The first and the third authors wish to sincerely acknowledge the warm hospitality provided by Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India where a major portion of the work was carried out during a scientific visit in January, 2012. Sincere thanks are due to the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, G., Chakraborthy, P. & Chattopadhyay, S. Mann–Kendall trend analysis of tropospheric ozone and its modeling using ARIMA. Theor Appl Climatol 110, 321–328 (2012). https://doi.org/10.1007/s00704-012-0617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0617-y

Keywords

Navigation