Skip to main content

Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

Abstract

The history of early meteorological observations using instruments in the Czech Lands is described (the longest temperature series for Prague-Klementinum starts in 1775, precipitation series for Brno in 1803). Using the PRODIGE method, long-term monthly temperature and precipitation series from selected secular stations were homogenised (for 10 and 12 stations, respectively). All the seasonal and annual temperature series for the common period 1882–2010 show a significant positive linear trend with accelerated warming from the 1970s onwards. No significant linear trends were disclosed in the series of seasonal and annual precipitation totals. Correlation coefficients between the Czech series analysed decrease as distances between measuring stations increase. A sharper decrease of correlations for precipitation totals displays much weaker spatial relationships than those for mean temperatures. The highest correlations between all stations appeared in 1921–1950, the lowest in 1891–1920 (temperature) and 1981–2010 (precipitation). Wavelet analysis reveals that very distinct annual cycles as well as the slightly weaker semi-annual ones are better expressed for temperature series than for precipitation. Statistically significant cycles longer than 1 year are temporally unstable and sporadic for precipitation, while in the temperature series cycles of 7.4–7.7 and 17.9–18.4 years were recorded as significant by all stations in 1882–2010 (quasi-biennial cycle of 2.1–2.2 years for half the stations). Czech homogenous temperature series correlate best with those of the Northern Hemisphere for annual, spring and summer values (with significant correlation coefficients between 0.60 and 0.70), but this relation is temporally unstable. Circulation indices, such as the North Atlantic Oscillation Index (NAOI) and the Central European Zonal Index (CEZI), may explain the greater part of Czech temperature variability, especially from December to March and for the winter; however, this relationship is much weaker, or even random, for precipitation series. Further, relationships with the Southern Oscillation Index (SOI) are weak and random. Relatively weak coincidences exist between statistically significant cycles in the Czech series and those detected in NAOI, CEZI and SOI series.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aguilar E, Auer I, Brunetti M, Peterson TC, Wieringa J (2003) Guidelines on climate metadata and homogenization. WCDMP-No. 53, WMO-TD No. 1186. World Meteorological Organisation, Geneva, p 50

    Google Scholar 

  2. Auer I, Böhm R, Schöner W (2001) Austrian long-term climate 1767–2000: multiple instrumental climate time series from Central Europe. In: Österreichische Beiträge zu Meteorologie und Geophysik 25. Zentralanstalt für Meteorologie und Geodynamik, Wien, p 155

  3. Auer I, Böhm R, Jurković A, Orlik A, Potzmann R, Schöner W, Ungersböck M, Brunetti M, Nanni T, Maugeri M, Briffa K, Jones P, Efthymiadis D, Mestre O, Moisselin J-M, Begert M, Brazdil R, Bochnicek O, Cegnar T, Gajić-Čapka M, Zaninović K, Majstorović Ž, Szalai S, Szentimrey T, Mercalli L (2005) A new instrumental precipitation dataset for the Greater Alpine Region for the period 1800–2002. Int J Climatol 25:139–166. doi:10.1002/joc.1135

    Article  Google Scholar 

  4. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  5. Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80. doi:10.1002/joc.1118

    Article  Google Scholar 

  6. Bělínová M, Brázdil R (2012) Meteorologická pozorování c. k. Vlastenecko-hospodářské společnosti v Čechách v letech 1817–1847 (Meteorological observations by the I. R. Patriotic-Economic Society in Bohemia, 1817–1847). Meteorol Zpr 65:13–22

    Google Scholar 

  7. Beranová R, Huth R (2005) Long term changes of the heat island of Prague under different synoptic conditions. Theor Appl Climatol 82:113–118. doi:10.1007/s00704-004-0115-y

    Article  Google Scholar 

  8. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi:10.1002/joc.689

    Article  Google Scholar 

  9. Böhm R, Jones PD, Hiebl J, Frank D, Brunetti M, Maugeri M (2010) The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Clim Change 101:41–67. doi:10.1007/s10584-009-9649-4

    Article  Google Scholar 

  10. Brázdil R, Budíková M (1999) An urban bias in air temperature fluctuations at the Klementinum, Prague, The Czech Republic. Atmos Environ 33:4211–4217. doi:10.1016/S1352-2310(99)00163-6

    Article  Google Scholar 

  11. Brázdil R, Štěpánek P (1998) Kolísání teploty vzduchu v Brně v období 1891–1995 (Air temperature fluctuations in Brno in the period 1891–1995). Geografie 103:3–30

    Google Scholar 

  12. Brázdil R, Valášek H (2001) Popis klimatu Moravy od Kryštofa Passyho z roku 1797 (The description of the climate of Moravia by Kryštof Passy from the year 1797). Geografie 106:234–250

    Google Scholar 

  13. Brázdil R, Valášek H (2002) Meteorologická měření a pozorování v Zákupech v letech 1718–1720 (Meteorological measurements and observations at Zákupy in 1718–1720). Geografie 107:1–22

    Google Scholar 

  14. Brázdil R, Štěpánek P, Květoň V (2001) Temperature series of the Czech Republic and its relation to Northern Hemisphere temperatures in the period 1961–1999. In: Brunet India M, López Bonillo D (eds) Detecting and modelling regional climate change. Springer, Berlin, pp 69–80

    Google Scholar 

  15. Brázdil R, Valášek H, Sviták Z, Macková J (2002) History of weather and climate in the Czech Lands V. Instrumental meteorological measurements in Moravia up to the end of the eighteenth century. Masaryk University, Brno, p 250

    Google Scholar 

  16. Brázdil R, Valášek H, Macková J (2005) Meteorologická pozorování v Brně v první polovině 19. století. Historie počasí a hydrometeorologických extrémů (Meteorological observations in Brno in the first half of the 19th century. History of weather and hydrometeorological extremes). Archiv města Brna, Brno, p 452

    Google Scholar 

  17. Brázdil R, Řezníčková L, Valášek H (2006) Early instrumental meteorological observations in the Czech Lands I: Ferdinand Knittelmayer, Brno, 1799–1812. Meteorol Čas 9:59–71

    Google Scholar 

  18. Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242. doi:10.1002/joc.1718

    Article  Google Scholar 

  19. Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  20. Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381. doi:10.1002/joc.1251

    Article  Google Scholar 

  21. Bryś K, Bryś T (2010) Reconstruction of the 217 year (1791–2007) Wrocław air temperature and precipitation series. Bull Geogr Phys Geogr Ser 3:121–171

    Google Scholar 

  22. Cahynová M (2005) Vliv Severoatlantské oscilace na sezonní teploty vzduchu ve střední Evropě (Influence of the North Atlantic Oscillation on seasonal temperatures in Central Europe). Meteorol Zpr 58:41–46

    Google Scholar 

  23. Camuffo D, Bertolin C (2011) The earliest temperature observations in the world: the Medici Network (1654–1670). Clim Change. doi:10.1007/s10584-011-0142-5

  24. Castro A, Vidal MI, Calvo AI, Fernandez-Raga M, Fraile R (2011) May the NAO index be used to forecast rain in Spain? Atmosfera 24:251–265

    Google Scholar 

  25. Caussinus H, Lyazrhi F (1997) Choosing a linear model with a random number of change-points and outliers. Ann Inst Stat Math 49:761–775. doi:10.1023/A:1003230713770

    Article  Google Scholar 

  26. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc C App 53:405–425. doi:10.1111/j.1467-9876.2004.05155.x

    Article  Google Scholar 

  27. Chládová Z, Kalvová J (2005) Změny vybraných klimatických charakteristik v České republice v období 1961–2000 (The changes of selected climate characteristics in the Czech Republic in the period 1961–2000). Meteorol Zpr 58:146–153

    Google Scholar 

  28. Chládová Z, Kalvová J, Raidl A (2007) The observed changes of selected climate characteristics in the period 1961–2000. Meteorol Čas 10:13–19

    Google Scholar 

  29. Conrad V, Pollak LW (1950) Methods in climatology. Harvard University Press, Cambridge, p 459

    Google Scholar 

  30. Dobrovolný P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R (2010) Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change 101:69–107. doi:10.1007/s10584-009-9724-x

    Article  Google Scholar 

  31. Domonkos P, Tar K (2003) Long-term changes in observed temperature and precipitation series 1901–1998 from Hungary and their relations to larger scale changes. Theor Appl Climatol 75:131–147. doi:10.1007/s00704-002-0716-2

    Article  Google Scholar 

  32. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quaternary Sci Rev 26:3298–3310. doi:10.1016/j.quascirev.2007.08.002

    Article  Google Scholar 

  33. Hammerl C, Lenhardt W, Steinacker R, Steinhauser P (eds) (2001) Die Zentralanstalt für Meteorologie und Geodynamik 1851–2001. 150 Jahre Meteorologie und Geophysik in Österreich. Leykam Buchverlagsgesellschaft, Graz, p 838

    Google Scholar 

  34. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph Series 134. American Geophysical Union, Washington, p 279

    Google Scholar 

  35. Huth R, Pokorná L (2005) Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statistical methods. Int J Climatol 25:469–484. doi:10.1002/joc.1146

    Article  Google Scholar 

  36. Jacobeit J, Jönsson P, Bärring L, Beck C, Ekström M (2001) Zonal indices for Europe 1780–1995 and running correlations with temperature. Clim Change 48:219–241. doi:10.1023/A:1005619023045

    Article  Google Scholar 

  37. Jacobeit J, Rathmann J, Philipp A, Jones PD (2009) Central European temperature and precipitation extremes in relation to large-scale atmospheric circulation types. Meteorol Z 18:397–410. doi:10.1127/0941-2948/2009/0390

    Article  Google Scholar 

  38. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450. doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P

    Article  Google Scholar 

  39. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49. doi:10.1177/0959683608098952

    Article  Google Scholar 

  40. Jurković A, Majstorović Ž, Böhm R, Auer I, Gruber C, Hodžić S, Orlik A, Zulum D (2011) The Mountain Observatory Bjelašnica—history, analysis, homogenization and interpretation of a more than 100 years long temperature data set. Meteorol Z 20:291–303. doi:10.1127/0941-2948/2011/0205

    Article  Google Scholar 

  41. Kreil C (1865) Klimatologie von Böhmen. Carl Gerold’s Sohn, Wien, p 450

    Google Scholar 

  42. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101:109–141. doi:10.1007/s10584-009-9650-y

    Article  Google Scholar 

  43. Liu Y, Liang XS, Weisberg RH (2007) Rectification of the bias in the wavelet power spectrum. J Atmos Ocean Tech 24:2093–2102. doi:10.1175/2007JTECHO511.1

    Article  Google Scholar 

  44. Lüdecke C (2010) Von der Kanoldsammlung (1717–1726) zu den Ephemeriden der Societas Meteorologica Palatina (1781–1792). Meteorologische Quellen zur Umweltgeschichte des 18. Jahrhunderts. In: Poplow M (ed) Landschaften agrarisch-ökonomischen Wissens. Strategien innovativer Ressourcennutzung in Zeitschriften und Sozietäten des 18. Jahrhunderts. Cottbuser Studien zur Geschichte von Technik, Arbeit und Umwelt 30. Waxmann Verlag, Münster u. a., pp 97–119

  45. Maier U, Drohm C, Müller-Westermeier G (2006) Klimatologische Auswertung von Zeitreihen der Monatsmittel von Temperaturminima und Temperaturmaxima im 20. Jahrhundert. Berichte des Deutschen Wetterdienstes 229. Deutscher Wetterdienst, Offenbach am Main, p 77

    Google Scholar 

  46. Mallat S (1999) A wavelet tour of signal processing. Academic, San Diego, p 620

    Google Scholar 

  47. Manley G (1974) Central England temperatures: monthly means 1659 to 1973. Q J Roy Meteorol Soc 100:389–405

    Article  Google Scholar 

  48. Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were southern Swedish summer temperatures before 1860 as warm as measured? Int J Climatol 23:1495–1521. doi:10.1002/joc.945

    Article  Google Scholar 

  49. Osborn TJ (2006) Recent variations in the winter North Atlantic Oscillation. Weather 61:353–355. doi:10.1256/wea.190.06

    Article  Google Scholar 

  50. Parker DE (2010) Uncertainties in early Central England temperatures. Int J Climatol 30:1105–1113. doi:10.1002/joc.1967

    Article  Google Scholar 

  51. Percival DB (2002) Wavelets. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 4. Wiley, New York, pp 2338–2351

    Google Scholar 

  52. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge, p 620

    Google Scholar 

  53. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517. doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T

    Article  Google Scholar 

  54. Pišoft P, Kalvová J, Brázdil R (2004) Cycles and trends in the Czech temperature series using wavelet transforms. Int J Climatol 24:1661–1670. doi:10.1002/joc.1095

    Article  Google Scholar 

  55. Rebetez M, Reinhard M (2008) Monthly air temperature trends in Switzerland in 1901–2000 and 1975–2004. Theor Appl Climatol 91:27–34. doi:10.1007/s00704-007-0296-2

    Article  Google Scholar 

  56. Rodrigo FS (2010) Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula. Int J Climatol 30:1512–1525. doi:10.1002/joc.1987

    Google Scholar 

  57. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165. doi:10.1175/1520-0493(1987) 115<2161:AEOTTS>2.0.CO;2

    Article  Google Scholar 

  58. Scherrer SC, Appenzeller C, Liniger MA (2006) Temperature trends in Switzerland and Europe: implications for climate normals. Int J Climatol 26:565–580. doi:10.1002/joc.1270

    Article  Google Scholar 

  59. Schönwiese C-D, Walter A, Brinckmann S (2010) Statistical assessment of anthropogenic and natural global climate forcing. An update. Meteorol Z 19:3–10. doi:10.1127/0941-2948/2010/0421

    Article  Google Scholar 

  60. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  61. Staeger T, Grieser J, Schönwiese CD (2003) Statistical separation of observed global and European climate data into natural and anthropogenic signals. Clim Res 24:3–13. doi:10.3354/cr024003

    Article  Google Scholar 

  62. Štekl J, Brázdil R, Kakos V, Jež J, Tolasz R, Sokol Z (2001) Extrémní denní srážkové úhrny na území ČR v období 1879–2000 a jejich synoptické příčiny (Extreme Daily Precipitation Totals on the Territory of the Czech Republic in the 1879–2000 Period and Their Synoptic Causes). Národní klimatický program České republiky 31. Český hydrometeorologický ústav, Praha, p 140

  63. Štěpánek P (2004) Homogenizace teploty vzduchu na území České republiky v období přístrojových pozorování (Homogenisation of air temperature on the territory of the Czech Republic in the period of instrumental observations). Práce a studie 32. Český hydrometeorologický ústav, Praha, p 56

    Google Scholar 

  64. Štěpánek P, Řezníčková L, Brázdil R (2008) Homogenization of daily air pressure and temperature series for Brno (Czech Republic) in the period 1848–2005. In: Lakatos M, Szentimrey T, Bihari Z, Szalai S (eds) Proceedings of the fifth seminar for homogenization and quality control in climatological databases (Budapest, Hungary, 29 May–2 June 2006). WCDMP-No. 71. World Meteorological Organization, Geneva, pp 107–122

    Google Scholar 

  65. Štěpánek P, Zahradníček P, Skalák P (2009) Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Adv Sci Res 3:23–26. doi:10.1007/s10584-009-9741-9

    Article  Google Scholar 

  66. Strnadt A (1791) Meteorologische Resultate der in Prag und einigen andern Orten in Böhmen gemachten Luftbeobachtungen und andern Erscheinungen. Neuere Abhandlungen der k. Böhmischen Gesellschaft der Wissenschaften. Erster Band. J. V. Degen, Wien, Prag, pp 235–256

  67. Strnadt A (1794a) Ueber die mittlere Barometerhöhe von Prag. In: Mayer J (ed) Sammlung Physikalischer Aufsätze, besonders die Böhmische Naturgeschichte betreffend, von einer Gesellschaft Böhmischer Naturforscher. Vierter Band. In der Waltherischen Hofbuchhandlung, Dresden, pp 41–60

    Google Scholar 

  68. Strnadt A (1794b) Bestimmung des mittlern Grads der Wärme von Prag. In: Mayer J (ed) Sammlung Physikalischer Aufsätze, besonders die Böhmische Naturgeschichte betreffend, von einer Gesellschaft Böhmischer Naturforscher. Vierter Band. In der Waltherischen Hofbuchhandlung, Dresden, pp 61–68

    Google Scholar 

  69. Strnadt A (1795) Resultate der in Prag und einigen andern Orten in Böhmen 1790, 1791, 1792, 1793 gemachten meteorologischen Beobachtungen. Neuere Abhandlungen der k. Böhmischen Gesellschaft der Wissenschaften. Zweyter Band. J. G. Calve, Prag, pp 249–253

  70. Tietäväinen H, Tuomenvirta H, Venäläinen A (2010) Annual and seasonal mean temperatures in Finand during the last 160 years based on gridded temperature data. Int J Climatol 30:2247–2256. doi:10.1002/joc.2046

    Article  Google Scholar 

  71. Toreti A, Desiato F, Fioravanti G, Perconti W (2010) Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Clim Change 99:211–227. doi:10.1007/s10584-009-9640-0

    Article  Google Scholar 

  72. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  73. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17. doi:10.3354/cr020009

    Article  Google Scholar 

  74. van Bebber WJ (1881) Die geographische Vertheilung und Bewegung, das Entstehen und Verschwinden der barometrischen Minima in den Jahren 1876 bis 1880. Z Öster Ges Meteorol 16:414–419

    Google Scholar 

  75. van Bebber WJ (1883) Typische Witterungserscheinungen. Z Öster Ges Meteorol 18:447–458

    Google Scholar 

  76. van der Schrier G, van Ulden A, van Oldenborgh GJ (2011) The construction of a Central Netherlands temperature. Clim Past 7:527–542. doi:10.5194/cp-7-527-2011

    Article  Google Scholar 

  77. van Oldenborgh GJ, van Ulden A (2003) On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century. Int J Climatol 23:1711–1724. doi:10.1002/joc.966

    Article  Google Scholar 

  78. Venema V, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne M, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2011) (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115. doi:10.5194/cp-8-89-2012

    Article  Google Scholar 

  79. Walter A, Schönwiese C-D (2002) Attribution and detection of anthropogenic climate change using a backpropagation neural network. Meteorol Z 11:335–343. doi:10.1127/0941-2948/2002/0011-0335

    Article  Google Scholar 

  80. Walter A, Schönwiese CD (2003) Nonlinear statistical attribution and detection of anthropogenic climate change using a simulated annealing algorithm. Theor Appl Climatol 76:1–12. doi:10.1007/s00704-003-0008-5

    Article  Google Scholar 

  81. Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–382. doi:10.1023/A:1014217317898

    Article  Google Scholar 

  82. Werner A, Schönwiese C-D (2002) A statistical analysis of the North Atlantic Oscillation and its impact on European temperature. J Atmos Ocean Sci 8:293–306. doi:10.1080/1023673021000028861

    Article  Google Scholar 

  83. Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692. doi:10.1002/joc.906

    Article  Google Scholar 

  84. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic, Amsterdam, p 627

    Google Scholar 

  85. Winkler P (2009a) Revision and necessary correction of the long-term temperature series of Hohenpeissenberg, 1781–2006. Theor Appl Climatol 98:259–268. doi:10.1007/s00704-009-0108-y

    Article  Google Scholar 

  86. Winkler P (2009b) Wissenschaftshistorische Untersuchungen zur Geschichte und insbesondere zur Datenqualität der langen meteorologischen Reihen des Observatoriums Hohenpeißenberg. Berichte des Deutschen Wetterdienstes 233. Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, p 187

    Google Scholar 

  87. Zorita E, Moberg A, Leijonhufvud L, Wilson R, Brázdil R, Dobrovolný P, Luterbacher J, Böhm R, Pfister C, Riemann D, Glaser R, Söderberg J, González-Rouco F (2010) European temperature records of the past five centuries based on documentary/instrumental information compared to climate simulations. Clim Change 101:143–168. doi:10.1007/s10584-010-9824-7

    Article  Google Scholar 

Download references

Acknowledgements

M. Bělínová, R. Brázdil, P. Dobrovolný and P. Štěpánek acknowledge financial support from the Grant Agency of the Czech Republic to project no. P209/10/0605, P. Pišoft to project no. P209/11/2509 of the same agency, and P. Zahradníček to the research plan CZ.1.05/1.1.00/02.0073 Global Change Research Centre AS CR, v.v.i. P. Jones (Norwich) kindly provided us with additional SOI data and J. Jacobeit (Augsburg) with CEZI series. Our thanks to Tony Long (Svinošice) for English style corrections.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rudolf Brázdil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brázdil, R., Zahradníček, P., Pišoft, P. et al. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor Appl Climatol 110, 17–34 (2012). https://doi.org/10.1007/s00704-012-0604-3

Download citation

Keywords

  • Temperature Series
  • North Atlantic Oscillation Index
  • Southern Oscillation Index
  • Precipitation Series
  • Wavelet Power Spectrum