Theoretical and Applied Climatology

, Volume 108, Issue 1–2, pp 217–234

Climate change scenarios for precipitation extremes in Portugal

  • Ana C. Costa
  • João A. Santos
  • Joaquim G. Pinto
Original Paper

Abstract

Precipitation indices are commonly used as climate change indicators. Considering four Climate Variability and Predictability-recommended indices, this study assesses possible changes in their spatial patterns over Portugal under future climatic conditions. Precipitation data from the regional climate model Consortium for Small-Scale Modelling–Climate version of the Local Model (CCLM) ensemble simulations with ECHAM5/MPI-OM1 boundary conditions are used for this purpose. For recent–past, medians and probability density functions of the CCLM-based indices are validated against station-based and gridded observational dataset from ENSEMBLES-based (gridded daily precipitation data provided by the European Climate Assessment & Dataset project) indices. It is demonstrated that the model is able to realistically reproduce not only precipitation but also the corresponding extreme indices. Climate change projections for 2071–2100 (A1B and B1 SRES scenarios) reveal significant decreases in total precipitation, particularly in autumn over northwestern and southern Portugal, though changes exhibit distinct local and seasonal patterns and are typically stronger for A1B than for B1. The increase in winter precipitation over northeastern Portugal in A1B is the most important exception to the overall drying trend. Contributions of extreme precipitation events to total precipitation are also expected to increase, mainly in winter and spring over northeastern Portugal. Strong projected increases in the dry spell lengths in autumn and spring are also noteworthy, giving evidence for an extension of the dry season from summer to spring and autumn. Although no coupling analysis is undertaken, these changes are qualitatively related to modifications in the large-scale circulation over the Euro-Atlantic area, more specifically to shifts in the position of the Azores High and associated changes in the large-scale pressure gradient over the area.

Abbreviations

CCLM COSMO-CLM

Consortium for Small-Scale Modelling–Climate version of the Local Model

GCM

Global climate model

GHG

Greenhouse gas

IPCC

International Panel on Climate Change

MSLP

Mean sea level pressure

NAO

North Atlantic Oscillation

RCM

Regional climate model

SRES

Synthesis Report on Emission Scenarios

WMW

Wilcoxon–Mann–Whitney

Supplementary material

704_2011_528_Fig8_ESM.jpg (95 kb)
Fig. A1

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the ensemble member 1 medians of PRCPTOT between future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000) in a autumn, b winter, c spring and d annual values (JPEG 95 kb)

704_2011_528_MOESM1_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig9_ESM.jpg (86 kb)
Fig. A2

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the autumn ensemble member 1 medians of each index for future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 86 kb)

704_2011_528_MOESM2_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig10_ESM.jpg (94 kb)
Fig. A3

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the winter ensemble member 1 medians of each index for future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 94 kb)

704_2011_528_MOESM3_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig11_ESM.jpg (83 kb)
Fig. A4

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the spring ensemble member 1 medians of each index for future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 82 kb)

704_2011_528_MOESM4_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig12_ESM.jpg (90 kb)
Fig. A5

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the ensemble member 2 medians of PRCPTOT between future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000) in a autumn, b winter, c spring and d annual values (JPEG 90 kb)

704_2011_528_MOESM5_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig13_ESM.jpg (92 kb)
Fig. A6

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the autumn ensemble member 2 medians of each index for future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 91 kb)

704_2011_528_MOESM6_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig14_ESM.jpg (92 kb)
Fig. A7

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the winter ensemble member 2 medians of each index for future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 92 kb)

704_2011_528_MOESM7_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig15_ESM.jpg (94 kb)
Fig. A8

Results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the spring ensemble member 2 medians of each index for future climate conditions under the A1B SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 94 kb)

704_2011_528_MOESM8_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig16_ESM.jpg (90 kb)
Fig. A9

As Fig. 3 but for the B1 SRES scenario: results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the two-member ensemble medians of PRCPTOT between future climate conditions under the B1 SRES scenario (2071–2100) and recent–past climate conditions (1961–2000) in a autumn, b winter, c spring and d annual values (JPEG 90 kb)

704_2011_528_MOESM9_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig17_ESM.jpg (91 kb)
Fig. A10

As Fig. 4 but for the B1 SRES scenario: results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the autumn two-member ensemble medians of each index for future climate conditions under the B1 SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 91 kb)

704_2011_528_MOESM10_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig18_ESM.jpg (91 kb)
Fig. A11

As Fig. 5 but for the B1 SRES scenario: results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the winter two-member ensemble medians of each index for future climate conditions under the B1 SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 90 kb)

704_2011_528_MOESM11_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig19_ESM.jpg (93 kb)
Fig. A12

As Fig. 6 but for the B1 SRES scenario: results of the one-sided Wilcoxon–Mann–Whitney tests for the differences in the spring two-member ensemble medians of each index for future climate conditions under the B1 SRES scenario (2071–2100) and recent–past climate conditions (1961–2000): a Rx5day, b R95T, c R95pTOT and d CDD (JPEG 92 kb)

704_2011_528_MOESM12_ESM.tif (11.8 mb)
High resolution image (TIFF 12035 kb)
704_2011_528_Fig20_ESM.jpg (341 kb)
Fig. A13

As Fig. 7 (right panels) but for the B1 SRES scenario: anomalies between future (2071–2100) and recent–past (1961–2000) fields in the composites of the mean sea level pressure (in hectopascals) within the Euro-Atlantic sector simulated by the ECHAM5 under the B1 SRES scenario in a autumn, b winter and c spring. Only differences with a statistical significance level of 5% are depicted (JPEG 340 kb)

704_2011_528_MOESM13_ESM.tif (102 kb)
High resolution image (TIFF 102 kb)

References

  1. Agresti A, Wackerly D, Boyett JM (1979) Exact conditional tests for cross-classifications: approximation of attained significance levels. Psychometrika 44:75–83CrossRefGoogle Scholar
  2. Alexander LV, Zhang X, Peterson TC, Caesar J et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290 CrossRefGoogle Scholar
  3. Andrade C, Santos JA, Pinto JG, Corte-Real J (2011) Large-scale atmospheric dynamics of the wet winter 2009–2010 and its impact on hydrology in Portugal. Clim Res 46:29–41. doi:10.3354/cr00945 CrossRefGoogle Scholar
  4. Bachner S, Kapala A, Simmer C (2008) Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol Z 17:407–419. doi:10.1127/0941-2948/2008/0300 CrossRefGoogle Scholar
  5. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Climate 19:3518–3543. doi:10.1175/JCLI3815.1 CrossRefGoogle Scholar
  6. Beniston M, Stephenson D, Christensen O, Ferro C et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95. doi:10.1007/s10584-006-9226-z CrossRefGoogle Scholar
  7. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newsletter 6:225–235Google Scholar
  8. Carvalho A, Flannigan MD, Logan KA, Gowman LM, Miranda AI, Borrego C (2010) The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Clim Chang 98:177–197. doi:10.1007/s10584-009-9667-2 CrossRefGoogle Scholar
  9. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  10. Costa AC, Soares A (2009a) Trends in extreme precipitation indices derived from a daily rainfall database for the south of Portugal. Int J Climatol 29:1956–1975. doi:10.1002/joc.1834 CrossRefGoogle Scholar
  11. Costa AC, Soares A (2009b) Homogenization of climate data: review and new perspectives using geostatistics. Math Geosci 41:291–305. doi:10.1007/s11004-008-9203-3 CrossRefGoogle Scholar
  12. de Lima MIP, Carvalho SCP, de Lima JLMP (2010) Investigating annual and monthly trends in precipitation structure: an overview across Portugal. Nat Hazards Earth Syst Sci 10:2429–2440. doi:10.5194/nhess-10-2429-2010 CrossRefGoogle Scholar
  13. Demuzere M, Werner M, van Lipzig NPM, Roeckner E (2009) An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. Int J Climatol 29:1796–1810. doi:10.1002/joc.1821 CrossRefGoogle Scholar
  14. Donat MG, Leckebusch GC, Pinto JG, Ulbrich U (2010) European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Clim Res 42:27–43. doi:10.3354/cr00853 CrossRefGoogle Scholar
  15. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi:10.1029/2005JD005965 CrossRefGoogle Scholar
  16. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193 CrossRefGoogle Scholar
  17. Früh B, Becker P, Deutschländer T, Hessel J-D et al (2011) Estimation of climate change impacts on the urban heat load using an urban climate model and regional climate projections. J Appl Meteor Climatol 50:167–184. doi:10.1175/2010JAMC2377.1 CrossRefGoogle Scholar
  18. Gallego MC, Trigo RM, Vaquero JM, Brunet M et al (2011) Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J Geophys Res 116:D02109. doi:10.1029/2010JD014255 CrossRefGoogle Scholar
  19. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734 CrossRefGoogle Scholar
  20. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615. doi:10.1002/joc.810 CrossRefGoogle Scholar
  21. Haugen JE, Iversen T (2008) Response in extremes of daily precipitation and wind from a downscaled multimodel ensemble of anthropogenic global climate change scenarios. Tellus A 60:411–426. doi:10.1111/j.1600-0870.2008.00315.x CrossRefGoogle Scholar
  22. Haylock MR, Goodess CM (2004) Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24:759–776. doi:10.1002/joc.1033 CrossRefGoogle Scholar
  23. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation. J Geophys Res 113:D20119. doi:10.1029/2008JD010201 CrossRefGoogle Scholar
  24. Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS, Trans Am Geophys Union 85:566. doi:10.1029/2004EO520005 CrossRefGoogle Scholar
  25. Hollweg HD, Böhm U, Fast I, Hennemuth B et al (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. M & D Technical Report 3. http://www.mad.zmaw.de/service-support/documents/reports/. Accessed 15 Nov 2010. doi:10.2312/WDCC/MaD_TeReport_No03
  26. Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Chang 42:3–7. doi:10.1023/A:1005491526870 CrossRefGoogle Scholar
  27. Kilsby CG, Tellier SS, Fowler HJ, Howels TR (2007) Hydrological impacts of climate change on the Tejo and Guadiana Rivers. Hydrol Earth Syst Sc 11:1175–1189. doi:10.5194/hess-11-1175-2007 CrossRefGoogle Scholar
  28. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40. doi:10.1111/j.1600-0870.2010.00475.x CrossRefGoogle Scholar
  29. Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453. doi:10.1002/joc.773 CrossRefGoogle Scholar
  30. Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the Eastern Mediterranean. Meteorol Atmos Phys 89:69–85. doi:10.1007/s00703-005-0122-2 CrossRefGoogle Scholar
  31. Kyselý J, Domonkos P (2006) Recent increase in persistence of atmospheric circulation over Europe: comparison with long-term variations since 1881. Int J Climatol 26:461–483. doi:10.1002/joc.1265 CrossRefGoogle Scholar
  32. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E et al (2009a) Climate simulation with CLM, climate of the 20th century run no. 1, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_C20_1_D3
  33. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E et al (2009b) Climate simulation with CLM, climate of the 20th century run no. 2, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_C20_2_D3
  34. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E et al (2009c) Climate simulation with CLM, scenario A1B run no. 1, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_A1B_1_D3
  35. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E et al (2009d) Climate simulation with CLM, scenario A1B run no. 2, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_A1B_2_D3
  36. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E et al (2009e) Climate simulation with CLM, scenario B1 run no. 1, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_B1_1_D3
  37. Lautenschlager M, Keuler K, Wunram C, Keup-Thiel E et al (2009f) Climate simulation with CLM, scenario B1 run no. 2, data stream 3: European region MPI-M/MaD. World Data Center for Climate. doi:10.1594/WDCC/CLM_B1_2_D3
  38. Lehner B, Czisch G, Vassolo S (2005) The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33:839–855. doi:10.1016/j.enpol.2003.10.018 CrossRefGoogle Scholar
  39. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios for viticultural zoning in Europe. Clim Res 43:163–177. doi:10.3354/cr00918 CrossRefGoogle Scholar
  40. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60CrossRefGoogle Scholar
  41. Maraun D, Wetterhall F, Ireson AM, Chandler RE et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314 CrossRefGoogle Scholar
  42. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  43. Moriondo M, Good P, Durão R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. doi:10.3354/cr031085 CrossRefGoogle Scholar
  44. Nakićenović N, Swart R (eds) (2000) IPCC special report on emissions scenarios. Cambridge University Press, CambridgeGoogle Scholar
  45. Panferov O, Doering C, Rauch E, Sogachev A, Ahrends B (2009) Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate. Environ Res Lett 4:045019. doi:10.1088/1748-9326/4/4/045019 CrossRefGoogle Scholar
  46. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dynam 26:387–405. doi:10.1007/s00382-005-0090-8 CrossRefGoogle Scholar
  47. Pereira MG, Trigo RM, da Camara CC, Pereira JMC, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agr Forest Meteorol 129:11–25. doi:10.1016/j.agrformet.2004.12.007 CrossRefGoogle Scholar
  48. Peterson TC (2005) Climate change indices. WMO Bulletin 54:83–86Google Scholar
  49. Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N (2001) Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001. World Meteorological Organization, WCDMP—no. 47/WMO—TD No. 1071. World Meteorological Organization, Geneva, p 143Google Scholar
  50. Pinto JG, Spangehl T, Ulbrich U, Speth P (2006) Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorol Z 15:279–291. doi:10.1127/0941-2948/2006/0128 CrossRefGoogle Scholar
  51. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dynam 29:195–210. doi:10.1007/s00382-007-0230-4 CrossRefGoogle Scholar
  52. Ramos AM, Trigo RM, Santo FE (2011) Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Clim Res 48:177–192. doi:10.3354/cr00934 CrossRefGoogle Scholar
  53. Randall DA, Wood RA, Bony S, Colman R, Fichefet T et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  54. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM. Meteorol Z (Berl) 17:347–348. doi:10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  55. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19:3771–3791. doi:10.1175/JCLI3824.1 CrossRefGoogle Scholar
  56. Roesch A, Jaeger EB, Lüthi D, Seneviratne SI (2008) Analysis of CCLM model biases in relation to intra-ensemble model variability. Meteorol Z 17:369–382. doi:10.1127/0941-2948/2008/0307 CrossRefGoogle Scholar
  57. Rosário L (2004) Indicadores de desertificação para Portugal Continental. Direcção-Geral dos Recursos Florestais (ed), Lisboa, May 2004, pp 56Google Scholar
  58. Santos JA, Corte-Real J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. Int J Climatol 25:33–50. doi:10.1002/joc.1101 CrossRefGoogle Scholar
  59. Santos JA, Corte-Real J, Ulbrich U, Palutikof J (2007a) European winter precipitation extremes and surface large-scale circulation: a coupled model and its scenarios. Theor Appl Climatol 87:85–102. doi:10.1007/s00704-005-0224-2 CrossRefGoogle Scholar
  60. Santos JA, Corte-Real J, Leite SM (2007b) Atmospheric large-scale dynamics during the 2004/2005 winter drought in Portugal. Int J Climatol 27:571–586. doi:10.1002/joc.1425 CrossRefGoogle Scholar
  61. Santos JA, Andrade C, Corte-Real J, Leite SM (2009a) The role of large-scale eddies in the occurrence of precipitation deficits in Portugal. Int J Climatol 29:1493–1507. doi:10.1002/joc.1818 CrossRefGoogle Scholar
  62. Santos JA, Pinto JG, Ulbrich U (2009b) On the development of strong ridge episodes over the eastern North Atlantic. Geophys Res Lett 36:L17804. doi:10.1029/2009GL039086 CrossRefGoogle Scholar
  63. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Climate 21:72–83. doi:10.1175/2007JCLI1631.1 CrossRefGoogle Scholar
  64. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. doi:10.1093/biomet/52.3-4.591 Google Scholar
  65. Sillmann J, Roeckner E (2008) Indices for extreme events in projections of anthropogenic climate change. Clim Chang 86:83–104. doi:10.1007/s10584-007-9308-6 CrossRefGoogle Scholar
  66. Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R, participating CMIP2 modelling groups (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dynam 27:401–420. doi:10.1007/s00382-006-0140-x CrossRefGoogle Scholar
  67. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Chang 79:185–211. doi:10.1007/s10584-006-9051-4 CrossRefGoogle Scholar
  68. Trenberth KE, Jones PD, Ambenje P, Bojariu R et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  69. Trigo RM, DaCamara C (2000) Circulation weather types and their impact on the precipitation regime in Portugal. Int J Climatol 20:1559–1581. doi:10.1002/1097-0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5 CrossRefGoogle Scholar
  70. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe climate impacts and associated physical mechanisms. Clim Res 20:9–17. doi:10.3354/cr020009 CrossRefGoogle Scholar
  71. Ulbrich U, Christoph M, Pinto JG, Corte-Real J (1999) Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity. Int J Climatol 19:379–390. doi:10.1002/(SICI)1097-0088(19990330)19:4<379::AID-JOC357>3.0.CO;2-8 CrossRefGoogle Scholar
  72. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131. doi:10.1007/s00704-008-0083-8 CrossRefGoogle Scholar
  73. Verde JC, Zêzere JL (2010) Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat Hazards Earth Syst Sci 10:485–497. doi:10.5194/nhess-10-485-2010 CrossRefGoogle Scholar
  74. Vicente-Serrano SM, Cuadrat-Prats JM (2007) Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian peninsula) during the second half of the twentieth century. Theor Appl Climatol 88:247–258. doi:10.1007/s00704-006-0236-6 CrossRefGoogle Scholar
  75. Vicente-Serrano SM, Trigo RM, López-Moreno JI, Liberato MLR, Lorenzo-Lacruz J, Beguería S, Morán-Tejeda E, Kenawy AE (2011) Extreme winter precipitation in the Iberian Península in 2010: anomalies, driving mechanisms and future projections. Clim Res 46:51–65. doi:10.3354/cr00977 CrossRefGoogle Scholar
  76. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, p 160Google Scholar
  77. Wijngaard J, Klein Tank AMG, Können GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692. doi:10.1002/joc.906 CrossRefGoogle Scholar
  78. Wilcoxon F (1945) Individual comparison by ranking methods. Biometrics 1:80–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ana C. Costa
    • 1
  • João A. Santos
    • 2
  • Joaquim G. Pinto
    • 3
  1. 1.ISEGIUniversidade Nova de LisboaLisbonPortugal
  2. 2.Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Physics DepartmentUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  3. 3.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany

Personalised recommendations