Skip to main content
Log in

CO2 dilution in the lower atmosphere from temperature and wind speed profiles

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Temperature and wind speed profiles obtained from 3 years of radio acoustic sounding system sodar measurements at a rural site in the northern Spanish plateau were fitted to polynomial functions. Depending on the extrema of these fits, several groups of profiles were considered. Daily evolution of temperature profiles corresponded to the lower boundary layer evolution. However, wind speed profiles revealed a frequent low-level jet during the whole day. CO2 surface concentrations were analysed, and surface CO2 dilution was also considered by selection of thin canopies with variable depth, resulting in dilution rates of 7 and 18 ppm when the layer increased 100 m for the 95th percentile and temperature and wind speed profiles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bradley S (2008) Atmospheric acoustic remote sensing. CRC Press, Boca Raton

    Google Scholar 

  • Brown M, Whitehead D, Hunt JE, Clough TJ, Arnold GC, Baisden WT, Sherlock RR (2009) Regulation of soil surface respiration in a grazed pasture in New Zealand. Agric For Meteorol 149:205–213

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Casso-Torralba P, Vilà-Guerau de Arellano J, Bosveld F, Soler MR, Vermeulen A, Werner C, Moors E (2008) Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. J Geophys Res 113:D12119. doi:10.1029/2007JD009583

    Article  Google Scholar 

  • Chang SC, Tseng KH, Hsia YJ, Wang CP, Wu JT (2008) Soil respiration in a subtropical montane cloud forest in Taiwan. Agric For Meteorol 148:788–798

    Article  Google Scholar 

  • Chen JM, Chen B, Tans P (2007) Deriving daily carbon fluxes from hourly CO2 mixing ratios measured on the WLEF tall tower: An upscaling methodology. J Geophys Res 112:G01015. doi:10.1029/2006JG000280

    Article  Google Scholar 

  • Constant P, Poissant L, Villemur R (2008) Annual hydrogen, carbon monoxide and carbon dioxide concentrations and surface to air exchanges in a rural area (Québec, Canada). Atmos Environ 42:5090–5100

    Article  Google Scholar 

  • Corbin KD, Denning AS, Lokupitiya EY, Schuh AE, Miles NL, Davis KJ, Richardson S, Baker IT (2010) Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus 62B:521–532

    Google Scholar 

  • Culf AD, Fisch G, Malhi Y, Nobre CA (1997) The influence of the atmospheric boundary layer on carbon dioxide concentrations over a tropical forest. Agric For Meteorol 85:149–158

    Article  Google Scholar 

  • Dermody O, O’Neill BF, Zangerl AR, Berenbaum MR, DeLucia EH (2008) Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod-Plant Interact 2:125–135

    Article  Google Scholar 

  • García MA, Sánchez ML, Pérez IA, de Torre B (2008) Continuous carbon dioxide measurements in a rural area in the upper Spanish plateau. J Air Waste Manag Assoc 58:940–946

    Article  Google Scholar 

  • García MA, Sánchez ML, Pérez IA (2010) Synoptic weather patterns associated with carbon dioxide levels in Northern Spain. Sci Total Environ 408:3411–3417

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235

    Article  Google Scholar 

  • Gryning SE, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol 124:251–268

    Article  Google Scholar 

  • Gurk C, Fischer H, Hoor P, Lawrence MG, Lelieveld J, Wernli H (2008) Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe. Atmos Chem Phys 8:6395–6403

    Article  Google Scholar 

  • Haszpra L, Barcza Z (2010) Climate variability as reflected in a regional atmospheric CO2 record. Tellus 62B:417–426

    Google Scholar 

  • Haszpra L, Barcza Z, Hidy D, Szilágyi I, Dlugokencky E, Tans P (2008) Trends and temporal variations of major greenhouse gases at a rural site in Central Europe. Atmos Environ 42:8707–8716

    Article  Google Scholar 

  • Higuchi K, Worthy D, Chan D, Shashkov A (2003) Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada. Tellus 55B:115–125

    Google Scholar 

  • Hofmann DJ, Butler JH, Tans PP (2009) A new look at atmospheric carbon dioxide. Atmos Environ 43:2084–2086

    Article  Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Karipot A, Leclerc MY, Zhang G, Martin T, Starr G, Hollinger D, McCaughey JH, Hendrey GR (2006) Nocturnal CO2 exchange over a tall forest canopy associated with intermittent low-level jet activity. Theor Appl Climatol 85:243–248

    Article  Google Scholar 

  • Karipot A, Leclerc MY, Zhang G, Lewin KF, Nagy J, Hendrey GR, Starr G (2008) Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy. J Geophys Res 113:D10102. doi:10.1029/2007JD009149

    Article  Google Scholar 

  • Keeling CD, Piper SC, Whorf TP, Keeling RF (2011) Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003. Tellus 63B:1–22

    Google Scholar 

  • Luhar AK, Hurley PJ, Rayner KN (2009) Modelling near-surface low winds over land under stable conditions: sensitivity tests, flux-gradient relationships, and stability parameters. Boundary-Layer Meteorol 130:249–274

    Article  Google Scholar 

  • Mandke SK, Sahai AK, Shinde MA, Joseph S, Chattopadhyay R (2007) Simulated changes in active/break spells during the Indian summer monsoon due to enhanced CO2 concentrations: assessment from selected coupled atmosphere-ocean global climate models. Int J Climatol 27:837–859

    Article  Google Scholar 

  • Mathieu N, Strachan IB, Leclerc MY, Karipot A, Pattey E (2005) Role of low-level jets and boundary-layer properties on the NBL budget technique. Agric For Meteorol 135:35–43

    Article  Google Scholar 

  • Murayama S, Yamamoto S, Saigusa N, Kondo H, Takamura C (2005) Statistical analyses of inter-annual variations in the vertical profile of atmospheric CO2 mixing ratio and carbon budget in a cool-temperate deciduous forest in Japan. Agric For Meteorol 134:17–26

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53:1029–1044

    Article  Google Scholar 

  • Parazoo NC, Denning AS, Kawa SR, Corbin KD, Lokupitiya RS, Baker IT (2008) Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe. Atmos Chem Phys 8:7239–7254

    Article  Google Scholar 

  • Paris JD, Ciais P, Nédélec P, Ramonet M, Belan BD, Arshinov MY, Golitsyn GS, Granberg I, Stohl A, Cayez G, Athier G, Boumard F, Cousin JM (2008) The YAK-AEROSIB transcontinental aircraft campaigns: new insights on the transport of CO2, CO and O3 across Siberia. Tellus 60B:551–568

    Google Scholar 

  • Pérez IA, Sánchez ML, García MA, de Torre B (2009a) A classification of CO2 concentrations based on a binary meteorological six variable system. Agric For Meteorol 149:1686–1692

    Article  Google Scholar 

  • Pérez IA, Sánchez ML, García MA, de Torre B (2009b) Boundary layer structure and stability classification validated with CO2 concentrations over the Northern Spanish Plateau. Ann Geophys 27:339–349

    Article  Google Scholar 

  • Pérez IA, Sánchez ML, García MA, de Torre B (2009c) CO2 transport by urban plumes in the upper Spanish plateau. Sci Total Environ 407:4934–4938

    Article  Google Scholar 

  • Pérez IA, Sánchez ML, García MA, de Torre B (2009d) Daily and annual cycle of CO2 concentration near the surface depending on boundary layer structure at a rural site in Spain. Theor Appl Climatol 98:269–277

    Article  Google Scholar 

  • Pypker TG, Unsworth MH, Lamb B, Allwine E, Edburg S, Sulzman E, Mix AC, Bond BJ (2007) Cold air drainage in a forested valley: investigating the feasibility of monitoring ecosystem metabolism. Agric For Meteorol 145:149–166

    Article  Google Scholar 

  • Ramonet M, Ciais P, Aalto T, Aulagnier C, Chevallier F, Cipriano D, Conway TJ, Haszpra L, Kazan V, Meinhardt F, Paris JD, Schmidt M, Simmonds P, Xueref-Rémy I, Necki JN (2010) A recent build-up of atmospheric CO2 over Europe. Part 1: observed signals and possible explanations. Tellus 62B:1–13

    Google Scholar 

  • Sánchez ML, Pérez IA, García MA (2010) Study of CO2 variability at different temporal scales recorded in a rural Spanish site. Agric For Meteorol 150:1168–1173

    Article  Google Scholar 

  • Sarrat C, Noilhan J, Dolman AJ, Gerbig C, Ahmadov R, Tolk LF, Meesters AGCA, Hutjes RWA, Ter Maat HW, Pérez-Landa G, Donier S (2007) Atmospheric CO2 modeling at the regional scale: an intercomparison of 5 meso-scale atmospheric models. Biogeosciences 4:1115–1126

    Article  Google Scholar 

  • Shimoda S, Murayama S, Mo W, Oikawa T (2009) Seasonal contribution of C3 and C4 species to ecosystem respiration and photosynthesis estimated from isotopic measurements of atmospheric CO2 at a grassland in Japan. Agric For Meteorol 149:603–613

    Article  Google Scholar 

  • Steeneveld GJ, van deWiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63:920–935

    Article  Google Scholar 

  • Sun J, Burns SP, Delany AC, Oncley SP, Turnipseed AA, Stephens BB, Lenschow DH, LeMone MA, Monson RK, Anderson DE (2007) CO2 transport over complex terrain. Agric For Meteorol 145:1–21

    Article  Google Scholar 

  • Wang W, Davis KJ, Cook BD, Yi C, Butler MP, Ricciuto DM, Bakwin PS (2007) Estimating daytime CO2 fluxes over a mixed forest from tall tower mixing ratio measurements. J Geophys Res 112:D10308. doi:10.1029/2006JD007770

    Article  Google Scholar 

  • Wang Y, Munger JW, Xu S, McElroy MB, Hao J, Nielsen CP, Ma H (2010) CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China. Atmos Chem Phys 10:8881–8897

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

  • Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux–profile relationships for wind speed, φ m , and temperature, φ h , for the stable atmospheric boundary layer. Nonlinear Process Geophys 13:185–203

    Article  Google Scholar 

  • Yi C, Davis KJ, Bakwin PS, Berger BW, Marr LC (2000) Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105:9991–9999

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the Ministry of Science and Innovation, ERDF funds and the Regional Government of Castile and Leon

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro A. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, I.A., Sánchez, M.L. & García, M.Á. CO2 dilution in the lower atmosphere from temperature and wind speed profiles. Theor Appl Climatol 107, 247–253 (2012). https://doi.org/10.1007/s00704-011-0477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0477-x

Keywords

Navigation