Skip to main content

Advertisement

Log in

Spatial prediction of urban–rural temperatures using statistical methods

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Spatial information on climatic characteristics is beneficial in e.g. regional planning, building construction and urban ecology. The possibility to spatially predict urban–rural temperatures with statistical techniques and small sample sizes was investigated in Turku, SW Finland. Temperature observations from 36 stationary weather stations over a period of 6 years were used in the analyses. Geographical information system (GIS) data on urban land use, hydrology and topography served as explanatory variables. The utilized statistical techniques were generalized linear model and boosted regression tree method. The results demonstrate that temperature variables can be robustly predicted with relatively small sample sizes (n ≈ 20–40). The variability in the temperature data was explained satisfactorily with few accessible GIS variables. Statistically based spatial modelling provides a cost-efficient approach to predict temperature variables on a regional scale. Spatial modelling may aid also in gaining novel insights into the causes and impacts of temperature variability in extensive urbanized areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical identification model. IEEE Trans Autom Contr 19:716–723

    Article  Google Scholar 

  • Alcoforado MJ, Andrade H (2006) Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theor Appl Climatol 84:151–159. doi:10.1007/s00704-005-0152-1

    Article  Google Scholar 

  • Atkinson BW (2003) Numerical modelling of urban heat island intensity. Bound Lay Meteorol 109:285–310. doi:10.1023/A:1025820326672

    Article  Google Scholar 

  • Balázs B, Unger J, Gál T, Sümeghy Z, Geiger J, Szegedi S (2009) Simulation of the mean urban heat island using 2D surface parameters: empirical modelling, verification and extension. Meteorol Appl 16:275–287. doi:10.1002/met.116

    Article  Google Scholar 

  • Bottyan Z, Unger J (2003) A multiple linear statistical model for estimating the mean maximum urban heat island. Theor Appl Climatol 75:233–243. doi:10.1007/s00704-003-0735-7

    Article  Google Scholar 

  • Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290. doi:10.1016/j.geoderma.2005.04.025

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Chapman L, Thornes JE (2003) The use of geographical information systems in climatology and meteorology. Prog Phys Geogr 27:313–330. doi:10.1191/030913303767888464

    Article  Google Scholar 

  • City of Turku (2001) Turku Master Plan 2020. Environmental and City Planning Office, Turku

    Google Scholar 

  • City of Turku (2010) Floor area of the buildings. Real Estate Department, Turku

    Google Scholar 

  • Cleugh HA, Oke TR (1986) Suburban-rural energy balance comparisons in summer for Vancouver, B.C. Bound-Lay Meteorol 36:351–369. doi:10.1007/BF00118337

    Article  Google Scholar 

  • Conti S, Meli P, Minelli G, Solmini R, Toccaceli V, Vichi M, Beltrano C, Perini L (2005) Epidemologic study of mortality during the summer 2003 heat wave in Italy. Environ Res 98:390–399. doi:10.1016/j.envres.2004.10.009

    Article  Google Scholar 

  • Cotton WR, Pielke RA (1995) Human impacts on weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Dobech H, Dumolard P, Dyras I (eds) (2007) Spatial interpolation of climate data. The use of GIS in climatology and meteorology. ISTE, London

    Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statistics of Finland 1971–2000. Clim Stat Finland 2002:1–99

    Google Scholar 

  • Ekholm J (1981) Joensuun paikallisilmasto. Terra 93:145–154

    Google Scholar 

  • Eliasson I, Svensson MK (2003) Spatial air temperature variations and urban land use—a statistical approach. Meteorol Appl 10:135–149. doi:10.1017/S1350482703002056

    Article  Google Scholar 

  • Elith J, Leathwick J (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697. doi:10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  Google Scholar 

  • FMI (2009) Climate service. Telephone customer service. Finnish Meteorological Institute

  • Friedman J (2002) Stochastic gradient boosting. Comp Stat Data Anal 38:367–378. doi:10.1016/S0167-9473(01)00065-2

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 38:337–374. doi:10.1214/aos/1016218223

    Article  Google Scholar 

  • Giridharan R, Kolokotroni M (2009) Urban heat island characteristics in London during winter. Sol Energy 83:1668–1682. doi:10.1016/j.solener.2009.06.007

    Article  Google Scholar 

  • Giridharan R, Lau SSY, Ganesan S, Givoni B (2006) Urban design factors influencing urban heat island intensity in high rise high density environments of Hong Kong. Build Environ 42:3669–3684. doi:10.1016/j.buildenv.2006.09.011

    Article  Google Scholar 

  • Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecol 22:1227–1239. doi:10.1007/s10980-007-9102-x

    Article  Google Scholar 

  • Hart MA, Sailor DJ (2009) Quantifying the influence of landuse and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95:397–406. doi:10.1007/s00704-008-0017-5

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference and prediction. Springer, New York

    Google Scholar 

  • Heisler GM, Brazel AJ (2010) The urban physical environment: temperature and urban heat islands. In: Aitkenhead-Peterson J, Volder A (eds) Urban ecosystem ecology. American Society of Agronomy, Crop Science Society of America, Soil Science, Society of America, Madison, pp 29–56

    Google Scholar 

  • Hinkel KM, Nelson FE, Klene AE, Bell JH (2003) The urban heat island in winter at Barrow, Alaska. Int J Clim 23:1889–1905. doi:10.1002/joc.971

    Article  Google Scholar 

  • Hjort J, Marmion M (2008) Effects of sample size on the accuracy of geomorphological models. Geomorph 102:341–350. doi:10.1016/j.geomorph.2008.04.006

    Article  Google Scholar 

  • Hjort J, Marmion M (2009) Periglacial distribution modelling with a boosting method. Permafr Periglac Process 20:15–25. doi:10.1002/ppp.629

    Article  Google Scholar 

  • Hjort J, Etzelmüller B, Tolgensbakk J (2010) Effects of scale and data source in periglacial distribution modelling in a High Arctic environment, western Svalbard. Permafr Periglac Process 21:345–354. doi:10.1002/ppp.705

    Article  Google Scholar 

  • Howard L (1818) Climate of London. Harvey and Darton, London

    Google Scholar 

  • Johnson DP, Wilson JS (2009) The socio-spatial dynamics of extreme urban heat events: the case of heat-related deaths in Philadelphia. Appl Geogr 29:419–434. doi:10.1016/j.appgeog.2008.11.004

    Article  Google Scholar 

  • Kent M, Stevens RA, Zhang L (1999) Urban plant ecology patterns and processes:a case study of the flora of the City of Plymouth, Devon, UK. J Biogeogr 26:1281–1298. doi:10.1046/j.1365-2699.1999.00350.x

    Article  Google Scholar 

  • Kim Y, Baik J (2004) Daily maximum urban heat island intensity in large cities of Korea. Theor Appl Climatol 79:151–164. doi:10.1007/s00704-004-0070-7

    Article  Google Scholar 

  • Klysik K (1996) Spatial and seasonal distribution of anthropogenic heat emissions in Lodz, Poland. Atmos Environ 30:3397–3404. doi:10.1016/1352-2010(96)00043-X

    Article  Google Scholar 

  • Klysik K, Fortuniak K (1999) Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos Environ 33:3885–3895. doi:10.1016/S1352-2310(99)00131-4

    Article  Google Scholar 

  • Landsberg HE (1981) The urban climate. Academic, London

    Google Scholar 

  • Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281

    Article  Google Scholar 

  • Luoto M, Hjort J (2006) Scale matters—a multi-resolution study of the determinants of patterned ground activity in subarctic Finland. Geomorph 80:282–294. doi:10.1016/j.geomorph.2006.03.001

    Article  Google Scholar 

  • Magee N, Curtis J, Wendler G (1999) The urban heat island effect at Fairbanks, Alaska. Theor Appl Climatol 64:39–47. doi:10.1007/s007040050109

    Article  Google Scholar 

  • Martinaitis V (1998) Analytic calculation of degree-days for the regulated heating season. Energy Build 28(2):185–189

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  • Memon RA, Leung DYC, Chunho L (2007) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20(1):120–128. doi:10.1016/S1001-0742(08)60019-4

    Google Scholar 

  • Miara K, Paszyfiski J, Grzybowski J (1987) Zrózniicowanie przestrzenne bilansu promieniowania na obszarze Polski. Przegled Geogr. t. LIX, z. 4

  • Mihalakakou HA, Flocas M, Santamouris HCG (2002) Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. J Appl Meteorol 41:519–527. doi:10.1175/1520-0450(2002)041<0519:AONNTT>2.0.CO;2

    Article  Google Scholar 

  • Mills G (2009) Micro- and mesoclimatology. Prog Phys Geogr 33:711–717. doi:10.1177/0309133309345933

    Article  Google Scholar 

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7:769–779. doi:10.1016/0004-6981(73)90140-6

    Article  Google Scholar 

  • Oke TR (1981) Canyon geometry and the urban heat island: comparison of scale model and field observations. Int J Climatol 1:237–254. doi:10.1002/joc.3370010304

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • Oke TR (2006) Initial guidance to obtain representative meteorological observations at urban sites. Instruments and observing methods report No. 81. World Meteorological Organization, Geneva

    Google Scholar 

  • Peel MC, Finlayson BM, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 24 June 2010

  • Rajasekar U, Weng Q (2009) Urban heat island monitoring and analysis using a non-parametric model: a case study of Indianapolis. ISPRS J Photogramm Remote Sens 64:86–96. doi:10.1016/j.isprsjprs.2008.05.002

    Article  Google Scholar 

  • Ridgeway G (2007) Generalized boosted regression models. Documentation on the R Package ‘gbm’, version 1.6–3. http://cran.r-project.org/web/packages/gbm/gbm.pdf. Accessed 24 June 2010

  • Seinä A, Peltola J (1991) Duration of the ice season and statistics of fast ice thickness along the Finnish coast 1961–1990. Finn Mar Res 258:1–46

    Google Scholar 

  • Seinä A, Eriksson P, Kalliosaari S, Vainio J (2006) Ice seasons 2001–2005 in Finnish sea areas. Rep Ser Finn Inst Mar Res 57:1–94

    Google Scholar 

  • SLICES (2010) National Land Survey of Finland. http://www.slices.nls.fi/. Accessed 13 June 2010

  • Sokal RR, Rohlf F (1995) Biometry. WH Freeman, New York

    Google Scholar 

  • Steinecke K (1999) Urban climatological studies in Reykjavik surbarctic environment, Iceland. Atmos Environ 33:4157–4162. doi:10.1016/S1352-2310(99)00158-2

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Mod 148:1–13. doi:10.1016/S0304-3800(01)00388-X

    Article  Google Scholar 

  • Sundborg Å (1950) Local climatological studies of the temperature conditions in an urban area. Tellus 2:222–232. doi:10.1111/j.2153-3490.1950.tb00333.x

    Article  Google Scholar 

  • Suomi J, Käyhkö J (2011) The impact of environmental factors on urban temperature variability in the coastal city of Turku SW Finland. Int J Climatol. doi:10.1002/joc.227

    Google Scholar 

  • Svensson MK, Eliasson I (2002) Diurnal air temperatures in built-up areas in relation to urban planning. Landscape Urban Plan 61:37–54. doi:10.1016/S0169-2046(02)00076-2

    Article  Google Scholar 

  • Svensson M, Eliasson I, Holmer B (2002) A GIS based empirical model to simulate air temperature variations in the Göteborg urban area during the night. Clim Res 22:215–226

    Article  Google Scholar 

  • Szymanowski M, Kryza M (2009) GIS-based techniques for urban heat island spatialization. Clim Res 38:171–187

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25:99–103. doi:10.1016/S0378-7788(96)00999-1

    Article  Google Scholar 

  • Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AL, Li F, Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54:75–84. doi:10.1007/s00484-009-0256-x

    Article  Google Scholar 

  • Unger J, Sümeghy Z, Gulyás Á, Bottyán Z, Mucsi L (2001) Land-use and meteorological aspects of the urban heat island. Meteorol Appl 8:189–194. doi:10.1017/S1350482701002067

    Article  Google Scholar 

  • Vicente-Serrano SM, Lanjeri S, López-Moreno JI (2007) Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques. Int J Climatol 27:1103–1118. doi:10.1002/joc.1460

    Article  Google Scholar 

  • Vicente-Serrano SM, López-Moreno JI, Vega-Rodríguez MI, Beguería S, Cuadrat JM (2010) Comparison of regression techniques for mapping fog frequency: application to the Aragón region (northeast Spain). Int J Climatol 30:935–945. doi:10.1002/joc.1935

    Google Scholar 

  • Zimmermann NE, Edwards TC, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067. doi:10.1111/j.1365-2664.2007.01348.x

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to three anonymous reviewers for the critical and helpful comments which improved the manuscript. JS was funded by the Finnish Cultural Foundation’s Varsinais-Suomi Regional Fund and the Emil Aaltonen Foundation. TURCLIM project is maintained in collaboration with the Turku Environmental and City Planning Department, whose assistance is greatly acknowledged. The long-term reference weather data used in this study is provided by the Finnish Meteorological Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hjort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hjort, J., Suomi, J. & Käyhkö, J. Spatial prediction of urban–rural temperatures using statistical methods. Theor Appl Climatol 106, 139–152 (2011). https://doi.org/10.1007/s00704-011-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0425-9

Keywords

Navigation