Skip to main content

Advertisement

Log in

Direct near-surface measurements of sensible heat fluxes in the Arctic tundra applying eddy covariance and laser scintillometry—the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006)

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Recent climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished here by setting up long-term observation sites with high-quality in situ measurements of turbulent atmospheric energy fluxes applying the eddy covariance method and/or laser scintillometry in Arctic landscapes. Accurate quantification and well-adapted parameterizations of turbulent energy fluxes, e.g., during neutral to stable stratified conditions, are a fundamental problem in soil–snow–ice–vegetation–atmosphere interaction studies. We present results from the Arctic Turbulence Experiment (ARCTEX-2006) performed on the island of Svalbard, Norway, during the winter/spring transition 2006 that focus on data correction and quality assessment, on synoptic weather conditions, as well as site-specific micrometeorological features. A quality assessment and data correction adapted to the environmental conditions of polar regions demonstrates that specific measurement errors common at a high Arctic landscape could be minimized. We discuss the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, and the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy flux data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andreas EL, Makshtas AP (1985) Energy exchange over Antarctic Sea ice in the spring. J Geophys Res 90(C10):7199–7212

    Article  ADS  Google Scholar 

  • Andreas EL, Guest PS, Persson POG, Fairall CW, Horst TW, Moritz RE, Semmer SR (2002) Near-surface water vapor over polar sea ice is always near ice saturation. J Geophys Res 107(C10):SHE8-1. doi:10.1029/2000JC000411

    Article  Google Scholar 

  • Bareiss J, Lüers J (2007) Direct measurements of turbulent fluxes in the near surface environment at high latitudes applying the eddy-covariance method—Arctic Turbulence Experiment 2006—Part 3, Aerological measurements during the ARCTEX 2006 campaign, May 2nd to May 20th, 2006. Work Report 33, University of Bayreuth, Department of Micrometeorology, Internet. ISSN 1614-8926, 90 pp

  • Boike J, Roth K, Ippisch O (2003) Seasonal snow cover on frozen ground: energy balance calculations of a permafrost site near Ny-Ålesund, Spitsbergen. J Geophys Res 108(D2):8163. doi:10.1029/2001JD000939

    Article  Google Scholar 

  • Comiso JC, Parkinson CL (2004) Satellite-observed changes in the Arctic. Phys Today 57(8):38–44

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic Sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972

    Article  Google Scholar 

  • Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600

    Article  ADS  CAS  Google Scholar 

  • Finnigan J, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A reevaluation of long-term flux measurement techniques. Part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48

    Article  ADS  Google Scholar 

  • Foken T (1996) Turbulenzexperiment zur Untersuchung stabiler Schichtungen. Ber Polarforsch 188:74–78

    Google Scholar 

  • Foken T (1998) Bestimmung der Schneedrift mittels Ultraschallanemometern. Ann Meteorol 37:451–452

    Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Heidelberg

    Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Article  Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Forrer J, Rotach MW (1997) On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Bound Layer Meteorol 85:111–136

    Article  ADS  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound Layer Meteorol 124:315–333

    Article  ADS  Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Bound Layer Meteorol 91:165–189

    Article  ADS  Google Scholar 

  • Horn DA, Johnson GL (1986) MIZEX East: past operations and future plans. Oceanus 29(1):66–72

    Google Scholar 

  • Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RE (2002) An annual cycle of Arctic surface cloud forcing at SHEBA. J Geophys Res 107:8039. doi:10.1029/2000JC000439

    Article  Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann KF, Cattle AP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus Ser A 56:328–341

    Article  ADS  Google Scholar 

  • Kimball JS, Zhao M, McGuire AD, Heinsch FA, Clein J, Calef M, Jolly WM, Kang S, Euskirchen SE, McDonald KC, Running SW (2007) Recent climate driven increases in vegetation productivity for the western Arctic: evidence of an acceleration of the northern terrestrial carbon cycle. Earth Interact 11:1–30. doi:10.1175/EI180.1

    Article  Google Scholar 

  • King JC (1990) Some measurements of turbulence over an Antarctic ice shelf. Quart J Roy Meteorol Soc 116:379–400

    Article  ADS  Google Scholar 

  • King JC, Anderson PS (1994) Heat and water vapor fluxes and scalar roughness lengths over an Antarctic ice shelf. Bound Layer Meteorol 69:101–121

    Article  Google Scholar 

  • King JC, Anderson PS, Smith MC, Mobbs SD (1996) The surface energy and mass balance at Halley, Antarctica during winter. J Geophys Res 101(D14):19119–19128

    Article  ADS  Google Scholar 

  • Kottmeier C (1986) Shallow gravity flows over the Ekström ice shelf. Bound Layer Meteorol 35:1–20

    Article  ADS  Google Scholar 

  • Kottmeier C, Belitz H-J (1987) Meteorological research using a high mast on the Antarctic ice shelf. Mar Technol 1:5–10

    Google Scholar 

  • Kutzbach L, Wille C, Pfeiffer EM (2007) The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosci 4:869–890

    Article  ADS  CAS  Google Scholar 

  • Launiainen J, Cheng B (1995) A simple non-iterative algorithm for calculating turbulent bulk fluxes in diabatic conditions over water, snow/ice and ground surface. Rep Ser Geophys 33, Department of Geophysics, University of Helsinki

  • Launiainen J, Cheng B, Uotila J, Vihma T (2001) Turbulent surface fluxes and air–ice coupling in the Baltic Air–Sea–Ice Study (BASIS). Ann Glaciol 33:237–242

    Article  ADS  Google Scholar 

  • Lindsay RW, Zhang J (2005) The thinning of arctic sea ice, 1988–2003: have we passed a tipping point? J Clim 18:4879–4894

    Article  ADS  Google Scholar 

  • Liu H, Peters G, Foken T (2001) New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound Layer Meteorol 100:459–468

    Article  ADS  Google Scholar 

  • Lloyd CR (2001a) The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. Glob Chang Biol 7:405–426

    Article  ADS  Google Scholar 

  • Lloyd CR (2001b) On the physical controls of the carbon dioxide balance at a high Arctic site in Svalbard. Theor Appl Climatol 70:167–182

    Article  ADS  Google Scholar 

  • Lüers J, Bareiss J (2007a) Direct measurements of turbulent fluxes in the near surface environment at high latitudes applying the eddy-covariance method—Arctic Turbulence Experiment 2006—Part 1. Technical documentation of the ARCTEX 2006 campaign, May 2nd to May 20th, 2006. Work Rep 31, University of Bayreuth, Department of Micrometeorology, Internet. ISSN 1614-8926, 32 pp

  • Lüers J, Bareiss J (2007b) Direct measurements of turbulent fluxes in the near surface environment at high latitudes applying the eddy-covariance method—Arctic Turbulence Experiment 2006—Part 2. Near surface measurements during the ARCTEX 2006 campaign, May 2nd to May 20th, 2006. Work Rep 32, University of Bayreuth, Department of Micrometeorology, Internet. ISSN 1614-8926, 75 pp

  • Lüers J, Bareiss J (2010) The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006). Atmos Chem Phys 10(1):157–168

    Article  ADS  Google Scholar 

  • Lugauer M, Winkler P (2005) Thermal circulation in South Bavaria—climatology and synoptic aspects. Meteorol Z 14:15–30

    Article  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL032043

    Article  ADS  Google Scholar 

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Work Rep 26, University of Bayreuth, Department of Micrometeorology, Internet. ISSN 1614-8926, 45 pp

  • Mauder M, Foken T, Clement R, Elbers JA, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data—Part 2: inter-comparison of eddy-covariance software. Biogeosci 5:451–462

    Article  ADS  CAS  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Bound Layer Meteorol 37:17–35

    Article  ADS  Google Scholar 

  • Moritz RE, Perovich DK (eds) (1996) Surface heat budget of the Arctic Ocean science plan. ARCSS/OAII Report 5, University of Washington, Seattle, 64 pp

  • Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502

    Article  ADS  PubMed  CAS  Google Scholar 

  • Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D, Neiderbäumer G, Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D, Neiderbäumer G (1992) Greenland Expedition, Progress Rep. 2, April 1991 to October 1992. Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus Ser A 60:589–597

    Article  ADS  Google Scholar 

  • Persson OPG, Fairall W, Andreas EL, Guest PS (2002) Measurements near the Atmospheric Surface Flux Group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(C10):SHE21-1. doi:10.1029/2002JC000705

    Article  Google Scholar 

  • Pritchard RS et al (1990) CEAREX Drift Experiment. EOS Transactions of the American Geophysical Union 71(40):1115–1118

    Google Scholar 

  • Ruffieux D, Persson PO, Fairall CW, Wolfe DE (1995) Ice pack and lead surface energy budgets during LEADEX 1992. J Geophys Res 100:4593–4612

    Article  ADS  Google Scholar 

  • Sachs T, Wille C, Boike J, Kutzbach L (2008) Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta. Siberia J Geophys Res 113:G00A03. doi:10.1029/2007JG000505

    Article  Google Scholar 

  • Schmid RA (1982) Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Bound Layer Meteorol 23:223–246

    Article  ADS  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, DeBruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound Layer Meteorol 26:81–93

    Article  ADS  Google Scholar 

  • Serreze MC, Wals I, Chapin F, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel W, Morison J, Zhang T, Barry R (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Simmonds I, Burke C, Keay K (2008) Arctic climate change as manifest in cyclone behavior. J Clim 21(22):5777–5796

    Article  ADS  Google Scholar 

  • Sodemann H, Foken T (2004) Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer. Quart J Roy Meteorol Soc 130:2665–2671

    Article  ADS  Google Scholar 

  • Sodemann H, Foken T (2005) Special characteristics of the temperature structure near the surface. Theor Appl Climatol 80:81–89

    Article  ADS  Google Scholar 

  • Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic's shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32(4):L04501. doi:10.1029/2004GL021810

    Article  Google Scholar 

  • Stull RB (2000) Meteorology for scientists and engineers, 2nd edn. Brooks/Cole, Pacific Grove, 502 pp

    Google Scholar 

  • Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. 15th Conference on Turbulence and Boundary Layers, Wageningen, NL, 15–19 July 2002. American Meteorological Society, pp 129–132

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound Layer Meteorol 123:317–337

    Article  ADS  Google Scholar 

  • Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J Climatol 27(3):277–293. doi:10.1002/joc.1406

    Article  Google Scholar 

  • Untersteiner N (1980) AIDJEX review. In: Pritchard N (ed) Sea ice processes and models. University of Washington, Seattle, pp 3–11

    Google Scholar 

  • Uttal T et al (2002) The surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83:255–275

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Article  Google Scholar 

  • Vickers D, Thomas C, Law BE (2009) Random and systematic CO2 flux sampling errors for tower measurements over forests in the convective boundary layer. Agric For Meteorol 149:73–83

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106:85–100

    Article  ADS  Google Scholar 

  • Westermann S, Boike J, Piel K, Lüers J (2008) Long-term monitoring of sensible and latent heat fluxes using eddy covariance at a high arctic permafrost site in Svalbard, Norway. In: Kane DL, Hinkel KM (eds) Ninth International Conference on Permafrost 2008: extended abstracts part III. Institute of Northern Engineering, University of Alaska, Fairbanks, pp 341–342

    Google Scholar 

  • Westermann S, Lüers J, Langer M, Piel K, Boike J (2009) The annual surface energy budget of a high-Arctic permafrost site on Svalbard, Norway. Cryosphere 3:245–263

    Article  Google Scholar 

  • Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen W (ed) Atmospheric processes over complex terrain. American Meteorological Society, Boston, pp 5–42

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound Layer Meteorol 99:127–150

    Article  ADS  Google Scholar 

  • Wille C, Kutzbach L, Sachs T, Wagner D, Pfeiffer E-M (2008) Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Glob Chang Biol 14(6):1395–1408

    Article  Google Scholar 

  • Zilitinkevich SS, Calanca P (2000) An extended similarity theory for the stably stratified atmospheric surface layer. Quart J Roy Meteorol Soc 126:1913–1923

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank all of those from the French-German Arctic Research Base led by the Alfred Wegener Institute for Polar and Marine Research (AWI) and the Institut polaire français Paul Émile Victor (IPEV) for their efforts to succeed with the ARCTEX-2006 campaign, especially the station leader Rainer Vockenroth. We also appreciated the logistic support of the staff of the Kingsbay Company at Ny-Ålesund. Very welcome was the major support and wise counsel of Prof. Dr. Thomas Foken, head of the Department of Micrometeorology, University of Bayreuth. Many thanks go also to Jo Olesch (technical support) and to Prof. Dr. Alfred Helbig. This study was funded by the Deutsche Forschungsgemeinschaft under reference no. DFG-FO 226/11-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lüers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüers, J., Bareiss, J. Direct near-surface measurements of sensible heat fluxes in the Arctic tundra applying eddy covariance and laser scintillometry—the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Theor Appl Climatol 105, 387–402 (2011). https://doi.org/10.1007/s00704-011-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-011-0400-5

Keywords

Navigation