Skip to main content

Comparison of human radiation exchange models in outdoor areas


Results from the radiation components of seven different human thermal exchange models/methods are compared. These include the Burt, COMFA, MENEX, OUT_SET* and RayMan models, the six-directional method and the new Park and Tuller model employing projected area factors (f p) and effective radiation area factors (f eff) determined from a sample of normal- and over-weight Canadian Caucasian adults. Input data include solar and longwave radiation measured during a clear summer day in southern Ontario. Variations between models came from differences in f p and f eff and different estimates of longwave radiation from the open sky. The ranges between models for absorbed solar, net longwave and net all-wave radiation were 164, 31 and 187 W m−2, respectively. These differentials between models can be significant in total human thermal exchange. Therefore, proper f p and f eff values should be used to make accurate estimation of radiation on the human body surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Ali-Toudert F, Djenane M, Bensalem R, Mayer H (2005) Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim Res 28:243–256. doi:10.3354/cr028243

    Article  Google Scholar 

  • Blazejczyk K, Nilsson H, Holmér I (1993) Solar heat load on man: review of different methods of estimation. Int J Biometeorol 37:125–132. doi:10.1007/BF01212621

    PubMed  Article  CAS  Google Scholar 

  • Blazejczyk K (1994) New climatological-and-physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. In: Blazejczyk K, Krawczyk B (ed) Bioclimatic research of the human heat balance. Polish Academy of Sciences, Institute of Geography and Spatial Organization, Warsaw, pp 27–58

  • Blazejczyk K (2004) Assessment of radiation balance in man in various meteorological and geographical conditions. Geogr Pol 77:63–76

    Google Scholar 

  • Blazejczyk K (2005) MENEX_2005-the updated version of man-environment heat exchange model. Accessed 31 December 2010, 14 pp

  • Brown RD, Gillespie TJ (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int J Biometeorol 30:43–52. doi:10.1007/BF02192058

    PubMed  Article  CAS  Google Scholar 

  • Brown RD, Gillespie TJ (1995) Microclimatic landscape design: creating thermal comfort and energy efficiency. Wiley, New York

    Google Scholar 

  • Brunt D (1932) Notes on radiation in the atmosphere. Q J R Meteorol Soc 58:389–420. doi:10.1002/qj.49705824704

    ADS  Article  Google Scholar 

  • Burt JE (1979) A model of human thermal comfort and associated comfort patterns for the United States. C. W. Thornthwaite Associates, Centerton

    Google Scholar 

  • Fanger PO (1972) Thermal comfort: analysis and applications in environmental engineering. McGraw-Hill, New York

    Google Scholar 

  • Gagge AP, Stolwijk JAJ, Nishi Y (1969) The prediction of thermal comfort when thermal equilibrium is maintained by sweating. ASHRAE Trans Part 2:108–123

    Google Scholar 

  • Geiger R (1965) The climate near the ground. Havard University Press, Cambridge

    Google Scholar 

  • Guibert A, Taylor CL (1952) Radiation area of the human body. J Appl Physiol 5:24–37

    PubMed  CAS  Google Scholar 

  • Huang H, Ooka R, Kato S (2005) Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer. Atmos Environ 39:6362–6375. doi:10.1016/j.atmosenv.2005.07.018

    Article  CAS  Google Scholar 

  • Idso SB (1981) A set of equations for full spectrum and 8- to 14-micrometre and 10.5- to 12.5-micrometre thermal radiation from cloudless skies. Water Resour Res 17:295–304

    ADS  Article  Google Scholar 

  • Iziomon MG, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: measurement and parameterization. J Atmos Sol Terr Phys 65:1107–1116. doi:10.1016/j.jastp.2003.07.007

    ADS  Article  Google Scholar 

  • Jendritzky G, Nübler W (1981) A model analyzing the urban thermal environment in physiologically significant terms. Arch Meteor Geophy B 29:313–326

    Article  Google Scholar 

  • Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr Akad Raumforsch Landesplan, No. 114

  • Kenny NA, Warland JS, Brown RD, Gillespie TG (2008) Estimating the radiation absorbed by a human. Int J Biometeorol 52:491–503. doi:10.1007/s00484-008-0145-8

    PubMed  Article  Google Scholar 

  • Kerslake DM (1972) The stress of hot environments. Cambridge University Press, Cambridge. ISBN 0-521-08343-5

    Google Scholar 

  • Krys SA, Brown RD (1990) Radiation absorbed by a vertical cylinder in complex outdoor environment under clear sky conditions. Int J Biometeorol 34:69–75. doi:10.1007/BF01093450

    Article  Google Scholar 

  • Kubaha K, Fiala D, Toftum J, Taki AH (2004) Human projected area factors for detailed direct and diffuse solar radiation analysis. Int J Biometeorol 49:113–129. doi:10.1007/s00484-004-0214-6

    PubMed  Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2000) Estimation and calculation of the mean radiant temperature within urban structures. In: de Dear RJ, Kalma JD, Oke TR, Auliciems A (ed) Biometeorology and urban climatology at the turn of the millennium. ICB-ICUC’99, Sydney, WCASP-50, WMO/TD No 1026, 273-278

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments-application of the RayMan model. Int J Biometeorol 51:323–334. doi:10.1007/s00484-006-0061-8

    PubMed  Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2009) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. doi:10.1007/s00484-009-0261-0

  • Oliveira S, Andrade H (2007) An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int J Biometeorol 52:69–84. doi:10.1007/s00484-007-0100-0

    PubMed  Article  Google Scholar 

  • Park S (2003) Estimating radiation received by a person in the landscape. MSc thesis, University of Guelph

  • Park S, Tuller SE (2010) Human body area factors for radiation exchange analysis: Standing and Walking postures. Int J Biometeorol (published online). doi:10.1007/s00484-010-0385-2

  • Parsons K (1993) Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance-the principles and the practice. Taylor & Francis, London

    Book  Google Scholar 

  • Pickup J, de Dear R (2000) An outdoor thermal comfort index (OUT-SET*)—part Ι—the model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (ed) Biometeorology and urban climatology at the turn of the millennium-selected papers from the conference ICB-ICUC’99 (Sydney, 8–12 November 1999), WCASP-50, WMO/TD-No. 1026. World Meteorological Organization, Geneva, pp 279–283

  • Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38:721–738. doi:10.1016/S0360-1323(02)00209-3

    Article  Google Scholar 

  • Steadman RG (1971) Indices of windchill of clothed persons. J Appl Meteorol 10:674–683. doi:10.1175/1520-0450(1971)010<0674:IOWOCP>2.0.CO;2

    Article  Google Scholar 

  • Steadman RG (1979) The assessment of sultriness. Part II: effects of wind, extra radiation and barometric pressure on apparent temperature. J Appl Meteorol 18:874–885. doi:10.1175/1520-0450(1979)018<0874:TAOSPI>2.0.CO;2

    Article  Google Scholar 

  • Swinbank WC (1963) Long-wave radiation from clear skies. Q J R Meteorol Soc 89:339–348. doi:10.1002/qj.49708938105

    ADS  Article  Google Scholar 

  • Tanabe S, Narita C, Ozeki Y, Konishi M (2000) Effective radiation area of human body calculated by a numerical simulation. Energ Buildings 32:205–215. doi:10.1016/S0378-7788(00)00045-1

    Article  Google Scholar 

  • Terjung WH, Louie S (1971) Potential solar radiation climates of man. Ann Assoc Am Geogr 61:481–500. doi:10.1111/j.1467-306.1971.tb00801.x

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993. doi:10.1002/joc.1537

    Article  Google Scholar 

  • Tuller SE (1990) Standard seasons. Int J Biometeorol 34:181–188. doi:10.1007/BF01048718

    Article  Google Scholar 

  • Underwood CR, Ward EJ (1966) The solar radiation area of man. Ergonomics 9:155–168. doi:10.1080/00140136608964361

    PubMed  Article  CAS  Google Scholar 

  • Ward EJ, Underwood CR (1967) Effect of posture on the solar radiation area of man. Ergonomics 10:399–409. doi:10.1080/00140136708930887

    PubMed  Article  CAS  Google Scholar 

  • VDI (1998) VDI 3787, part 2: environmental meteorology-methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level part 1: climate. Beuth, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sookuk Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, S., Tuller, S.E. Comparison of human radiation exchange models in outdoor areas. Theor Appl Climatol 105, 357–370 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Longwave Radiation
  • Total Body Surface Area
  • COMFA Model
  • Total Solar Radiation
  • Area Factor