Skip to main content

The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation

Abstract

The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Akbari H, Taha H (1992) The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities. Energy 17(2):141–149

    Article  Google Scholar 

  2. Akbari H, Kurn DM, Bretz SE, Hanford JW (1997) Peak power and cooling energy savings of shade tree. Energy Build 25:139–148

    Article  Google Scholar 

  3. Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70:295–310

    Article  Google Scholar 

  4. Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol Energy 81:742–754

    Article  Google Scholar 

  5. Ali-Toudert F, Djenane M, Bensalem R, Mayer H (2005) Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim Res 28:243–256

    Article  Google Scholar 

  6. ASHRAE (2001) ASHRAE fundamentals handbook 2001 (SI Edition), Vol. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, ISBN: 1883413885

  7. Chapman L (2008) An introduction to ‘upside-down’ remote sensing. Prog Phys Geogr 32:529–542

    Article  Google Scholar 

  8. Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2010) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob Chang Biol. doi:10.1111/j.1365-2486.2010.02281.x

    MATH  Google Scholar 

  9. Eliasson I, Knez I, Westerberg U, Thorsson S, Lindberg F (2007) Climate and behaviour in a Nordic city. Lanscape Urban Plann 82:72–84

    Article  Google Scholar 

  10. Fanger PO (1970) Thermal comfort. Danish Technical Press, Copenhagen

    Google Scholar 

  11. Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAETrans 92:709–731

    Google Scholar 

  12. Greater London Authority (2010) The draft climate change adaptation strategy for London. pp 138. Available at: http://www.london.gov.uk/climatechange/sites/climatechange/staticdocs/Climiate_change_adaptation.pdf

  13. Honjo T, Takakura T (1990–1991) Simulation of thermal effects of urban green areas on their surrounding areas. Energy Build 15:443–446

    Article  Google Scholar 

  14. Höppe P (1992) A new procedure to determine the mean radiant temperature outdoors. Wetter Leben 44:147–151

    Google Scholar 

  15. IPCC (2007) AR4 Synthesis report, full report, intergovernmental panel on climate change. Available at: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf

  16. Jonsson P, Eliasson I, Holmer B, Grimmond CSB (2006) Longwave incoming radiation in the Tropics: results from field work in three African cities. Theor Appl Climatol 85:185–201

    ADS  Article  Google Scholar 

  17. Lindberg F (2005) Towards the use of local governmental 3-d data within urban climatology studies. Mapp Image Sci 2:32–37

    Google Scholar 

  18. Lindberg F (2007) Modelling the urban climate using a local governmental geo-database. Meteorol Appl 14:263–273

    Article  Google Scholar 

  19. Lindberg F, Grimmond CSB (2010) Continuous sky view factor maps from high resolution urban digital elevation models. Clim Res 42:177–183

    Article  Google Scholar 

  20. Lindberg F, Holmer B, Thorsson S (2008) SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52:697–713

    PubMed  Article  Google Scholar 

  21. Martilli A (2009) On the derivation of input parameters for urban canopy models from urban morphological datasets. Bound-Lay Meteorol 130:301–306

    ADS  Article  Google Scholar 

  22. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    PubMed  Article  CAS  Google Scholar 

  23. Matzarakis A, Rutz F, Mayer H (2009) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139

    PubMed  Article  Google Scholar 

  24. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    ADS  Article  Google Scholar 

  25. Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol Z 17:241–250

    Article  Google Scholar 

  26. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    ADS  PubMed  Article  CAS  Google Scholar 

  27. Offerle B, Grimmond CSB, Oke TR (2003) Parameterization of net all-wave radiation for urban areas. J Appl Meteorol 42:1157–1173

    Article  Google Scholar 

  28. Oke TR (1987) Boundary layer climates. Routledge, Cambridge

    Google Scholar 

  29. Oke TR (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond B 324:335–349

    ADS  Article  Google Scholar 

  30. Pascal M, Laaidi K, Ledrans M, Baffert E, Caserio-Schönemann C, Le Tertre A, Manach J, Medina S, Rudant J, Empereur-Bissonnet P (2006) France’s heat health watch warning system. Int J Biometeorol 50:144–153

    PubMed  Article  Google Scholar 

  31. Picot X (2004) Thermal comfort in urban spaces: impact of vegetation growth—case study: Piazza della Scienza, Milan, Italy. Energy Build 36:329–334

    Article  Google Scholar 

  32. Ratti CF, Richens P (1999) Urban texture analysis with image processing techniques. In: Proceedings of the CAADFutures99, Atalanta, GA

  33. Ratti CF, Richens P (2004) Raster analysis of urban form. Environ Plann B Plann Des 31:297–309

    Article  Google Scholar 

  34. Ratti CF, Di Sabatino S, Britter R (2006) Urban texture analysis with image processing techniques: winds and dispersion. Theor Appl Climatol 84:77–90

    ADS  Article  Google Scholar 

  35. Reindl DT, Beckman WA, Duffie JA (1990) Diffuse fraction correlation. Sol Energy 45:1–7

    Article  Google Scholar 

  36. Robitu M, Musy M, Inard C, Groleau D (2006) Modeling the influence of vegetation and water pond on urban microclimate. Sol Energy 80:435–447

    Article  Google Scholar 

  37. Schmid HP, Cleugh HA, Grimmond CSB, Oke TR (1991) Spatial variability of energy fluxes in suburban terrain. Bound-Lay Meteorol 54:249–276

    ADS  Article  Google Scholar 

  38. Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993

    Article  Google Scholar 

  39. Upmanis H, Eliasson I, Lindqvist S (1998) The influence of green areas on nocturnal temperatures in a high latitude city (Goteborg, Sweden). Int J Climatol 18:681–700

    Article  Google Scholar 

  40. VDI (1994) VDI 3789. Part II: Environmental meteorology, interactions between atmosphere and surface; calculation of short-and long wave radiation. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1b, Düsseldorf

  41. VDI (1998) VDI 3789. Part I: Climate. VDI/DIN-Handbuch Reinhaltung der Luft, Band 1b, Düsseldorf

  42. WHO/WMO/UNEP (1996) Climate and health: the potential impacts of climate change. Geneva, Switzerland

  43. Yu B, Liu H, Wu J, Lin W-M (2009) Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: a case study of downtown Houston. Int J Remote Sens 30:4359–4385

    Article  Google Scholar 

  44. Zipperer WC, Sisinni SM, Pouyat RV, Foresman TW (1997) Urban tree cover: an ecological perspective. Urban Ecosyst 1:229–246

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by FORMAS—the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning and by European Community’s Seventh Framework Programme FP/2007–2011 BRIDGE (211345) project. The authors would like to thank the Meteorological Institute, University of Freiburg for providing human-biometeorological data from the KLIMES-project. The interface can be downloaded from the Göteborg Urban Climate Group-website (http://www.gvc2.gu.se/ngeo/urban/urban.htm).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fredrik Lindberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindberg, F., Grimmond, C.S.B. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theor Appl Climatol 105, 311–323 (2011). https://doi.org/10.1007/s00704-010-0382-8

Download citation

Keywords

  • Root Mean Square Error
  • Digital Elevation Model
  • Shortwave Radiation
  • Longwave Radiation
  • Physiological Equivalent Temperature