A non-parametric, statistical downscaling algorithm applied to the Rohini River Basin, Nepal

Abstract

Climate change scenarios generated by general circulation models have too coarse a spatial resolution to be useful in planning disaster risk reduction and climate change adaptation strategies at regional to river basin scales. This study presents a new non-parametric statistical K-nearest neighbor algorithm for downscaling climate change scenarios for the Rohini River Basin in Nepal. The study is an introduction to the methodology and discusses its strengths and limitations within the context of hindcasting basin precipitation for the period of 1976–2006. The actual downscaled climate change projections are not presented here. In general, we find that this method is quite robust and well suited to the data-poor situations common in developing countries. The method is able to replicate historical rainfall values in most months, except for January, September, and October. As with any downscaling technique, whether numerical or statistical, data limitations significantly constrain model ability. The method was able to confirm that the dataset available for the Rohini Basin does not capture long-term climatology. Yet, we do find that the hindcasts generated with this methodology do have enough skill to warrant pursuit of downscaling climate change scenarios for this particularly poor and vulnerable region of the world.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anandhi A et al (2007) Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int J Climatol. doi:10.1002/joc/1529

    Google Scholar 

  2. Charles SP et al (2004) Statistical downscaling of daily precipitation from observed and modeled atmospheric fields. Hydrol Process 18:1373–1394

    Article  Google Scholar 

  3. Chow VT et al (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  4. Christensen JH et al (2007) Regional climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contributions of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  5. Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Climate 19:2036–2045

    Article  Google Scholar 

  6. Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307:145–163

    Article  Google Scholar 

  7. Dixit A et al (2007) Flood disaster impacts and responses in Nepal Tarai’s marginalised basins. In: Moench M, Dixit A (eds) Working with the winds of change: toward strategies for responding to the risks associated with climate change and other risks. ISET-International: Boulder and ISET-Nepal, Kathmandu, pp 119–157

    Google Scholar 

  8. Douville H (2006) Impact of regional SST anomalies on the Indian monsoon response to global warming in the CNRM climate model. J Climate 19:2008–2024

    Article  Google Scholar 

  9. Fasullo J, Webster PJ (2003) A hydrologic definition of Indian monsoon onset and withdrawal. J Climate 16:3200–3211

    Article  Google Scholar 

  10. Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  11. Fowler HJ, Kilsby CG (2002) Precipitation and the North Atlantic Oscillation: a study of climatic variability in Northern England. Int J Climatol 22:843–866

    Article  Google Scholar 

  12. Fowler HJ, Belkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Article  Google Scholar 

  13. Gadgil S et al (2003) Droughts of the Indian summer monsoon: role of clouds over the Indian Ocean. Curr Sci 85(12):1713–1719

    Google Scholar 

  14. Gangopadhyay S et al (2005) Statistical downscaling using K-nearest neighbours. Water Resour Res 41:W0204

    Article  Google Scholar 

  15. Hahn DG, Manabe S (1975) The role of mountains in the south Asian monsoon circulation. J Atmos Sci 32:1514–1541

    Article  Google Scholar 

  16. Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 2999:691–694

    Article  Google Scholar 

  17. Ihara C et al (2006) Indian summer monsoon rainfall and its link with ENSO and Indian Ocean climate indices. Int J Climatol. doi:10.1002/joc.1394

    Google Scholar 

  18. India Water Portal (2008) http://www.indiawaterportal.org/data/metdata/. Accessed September, 2008

  19. Kalnay E et al (1996) The NCEP/NCAR reanalysis 40-year project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  20. Kinter JL III et al (2002) Recent change in the connection from the Asian Monsoon to ENSO. J Climate 15:1203–1215

    Article  Google Scholar 

  21. Kripalani RH et al (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159

    Article  Google Scholar 

  22. Kulkarni A et al (2006) Association between extreme monsoons and the dipole mode over the Indian subcontinent. Meteorol Atmos Phys. doi:10.1007/s00703-006-0204-9

  23. Kumar A et al (2001) Seasonal predictions, probabilistic verifications, and ensemble size. J Climate 14:1671–1676

    Article  Google Scholar 

  24. Kumar KK et al (2006) Unraveling the mystery of Indian Monsoon failure during El Nino. Science 314:115–119

    Article  Google Scholar 

  25. Lall U, Sharma A (1996) A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour Res 32(3):679–693

    Article  Google Scholar 

  26. Lau KM, Wu HT (2001) Principal modes of rainfall-SST variability of the Asian summer monsoon: a reassessment of the monsoon-ENSO relationship. J Climate 14:2880–2895

    Article  Google Scholar 

  27. Littlewood IG et al (2007) Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: two Brazilian catchments. Environ Model Softw 22:1229–1239

    Article  Google Scholar 

  28. Meehl GA, Arblaster JM (2002) The tropospheric biennial oscillation and Asian-Australian monsoon rainfall. J Climate 15:722–744

    Article  Google Scholar 

  29. Mielke P et al (1997) A single-sample estimate of shrinkage in meteorological forecasting. Weather Forecast 12:847–858

    Google Scholar 

  30. Miller RB et al (1981) Modeling daily river flows with precipitation input. Water Resour Res 17(1):209–215

    Article  Google Scholar 

  31. Müller WA et al (2005) A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J Climate 18:1513–1523

    Article  Google Scholar 

  32. Murphy AH (1972) Scalar and vector partitions of the ranked probability score. Mon Weather Rev 100(10):701–708

    Article  Google Scholar 

  33. Nepal Water Conservation Foundation (2006) Reconceptualizing flood mitigation in Tarai. NWCF, Kathmandu, p 168

    Google Scholar 

  34. Opitz-Stapleton S et al (2007) Generating streamflow forecasts for the Yakima River Basin using large-scale climate predictors. J Hydrol 341:131–143

    Article  Google Scholar 

  35. Osborn TJ et al (1999) Evaluation of the North Atlantic oscillation as simulated by a climate model. Climate Dyn 15:685–702

    Article  Google Scholar 

  36. Prairie J et al (2008) A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data. Water Resour Res 44:W06423. doi:10.1029/2007WR006684

    Article  Google Scholar 

  37. Rajagopalan B, Lall U (1999) A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resour Res 35(10):3089–3101

    Article  Google Scholar 

  38. Reason CJC et al (2000) ENSO and climatic signals across the Indian Ocean basin in the global context: part 1. Interannual composite patterns. Int J Climatol 20:1285–1327

    Article  Google Scholar 

  39. Slonosky VC et al (2001) Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. Int J Climatol 21:63–75

    Google Scholar 

  40. Stanski HR et al (1989) Survey of common verification methods in meteorology. Research Report No. MSRB 89-5, Environment Canada, Atmospheric Environment Service

  41. Tolika K et al (2006) An evaluation of a general circulation model (GCM) and the NCEP–NCAR reanalysis data for winter precipitation in Greece. Int J Climatol 26:935–955

    Article  Google Scholar 

  42. Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-Monsoon System. J Climate 12:2679–2690

    Article  Google Scholar 

  43. Trigo RM, Palutikof JP (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Climate 14:4422–4446

    Article  Google Scholar 

  44. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, London, p 495

    Google Scholar 

  45. von Storch H et al (2000) Review of empirical downscaling techniques. In: Regional climate development under global warming. General Technical Report No. 4, Conference Proceedings, Torbjornrud, Norway

  46. von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  47. Webster PJ et al (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510

    Article  Google Scholar 

  48. Wibly RL et al (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting Material for the Task Group on Data and Scenario Support for Impacts and Climate Analysis (TGICA), pp 27

  49. Wilks D (2006) Statistical methods in the atmospheric sciences. Elsevier, New York

    Google Scholar 

  50. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53(9):315–324

    Google Scholar 

  51. Wood AW et al (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res 107(D20):4429–4443

    Article  Google Scholar 

  52. Yates D et al (2003) A technique for generating regional climate scenarios using a nearest-neighbour algorithm. Water Resour Res 39(7):1199

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded under the UK Department for International Development (DfID) grant OHM0837 and the National Oceanic and Atmospheric Administration (NOAA) grant NA06OAR431008. We thank two anonymous reviewers for their close attention and advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah Opitz-Stapleton.

Appendix

Appendix

  • Step 1. Let [X] represent the data matrix large-scale climate indices for n years (rows) and M grid boxes (columns). The NCEP reanalysis dataset contains variables from nine grid squares (nine columns). Matrix [X] represents data for the entire record period (1976–2006).

  • Step 2. For feature year i (the year for which reconstruction is sought), select the corresponding large-scale climate predictors of year i. The x i predictors of the feature year i represent the feature vector {F}.

  • Step 3. Perform drop-one cross-validation. This involves dropping the year that is being hindcast from the matrix [X] to form a submatrix [S]. [S] contains predictor variables from all years of [X], except the feature year that is being hindcast.

  • Step 5. Estimate correlation matrix [C] (order m i × m i ) from data matrix [S].

  • Step 6. Perform Principal Component Analysis (see von Storch and Zwiers 2001; Wilks 2006) using matrix [C] to obtain the m i eigenvalues λ (1), ..., λ (m),and the eigenmatrix (matrix of eigenvectors as columns) [E] (order, m i × m i ).

  • Step 7. Project the feature vector {F} for feature year i onto the eigenvectors in matrix [E]. The projected feature vector {F’} is given by

    $$ {\left\{ {F\prime } \right\}_{1 \times {m_i}}} = {\left\{ F \right\}_{1 \times {m_i}}}{\left[ E \right]_{{m_i} \times {m_i}}} $$
    (3)
  • Step 8. Calculate the m i principal components. The principal component matrix [Z] is obtained from

    $$ {\left[ Z \right]_{n \times {m_i}}} = {\left[ S \right]_{t \times {m_i}}}{\left[ E \right]_{{m_i} \times {m_i}}} $$
    (4)
  • Step 9. For each element m (m = 1, …, n), compute the weighted Euclidian distance (d t ) between the projected feature vector {F’} (step 7) and the principal components contained in matrix [Z] (step 8).

    $$ {d_t} = {\left[ {\sum\limits_{j = 1}^{\rm{nret}} {\frac{{{\lambda_j}}}{{\sum\limits_{p = 1}^{{m_i}} {{\lambda_p}} }}{{\left( {f_j^\prime - {z_{tj}}} \right)}^2}\,} } \right]^{1/2}} $$
    (5)

    where, nret is the number of principal components retained such that \( \sum\limits_{j = 1}^{\rm{nret}} {{\lambda_{(j)}} \approx 0.90} \); z tj are the elements of [Z], and \( f_j^\prime \) are the elements of the projected feature vector {F’}. This gives a set of n distances as possible neighbours from the overlap period to feature year i.

  • Step 10. Sort the distances d t in ascending order and retain only the first K-neighbours (Gangopadhyay et al. 2005). The prescribed choice for K is \( \sqrt {n} \) ≈ 6 in this case. The K-nearest neighbours represent the K most similar years from the dataset to the feature year i.

  • Step 11. Select the observed rainfall for each of the K neighbour years from the subset period; this represents the set of possible rainfall magnitudes for feature year i.

  • Step 12. Assign weights to each of the K rainfall values. Several weighting schemes based on either K (Lall and Sharma 1996; Rajagopalan and Lall 1999) or distance such as the bi-square weight function (Gangopadhyay et al. 2005) and inverse distance weighting (Chow et al. 1988) are available. We tested our results using these different weighting schemes and found that they produce very similar results. We present results in this paper based on the bi-square weighting scheme. The bi-square weight, w k , for neighbour k is given by

    $$ {w_k} = \frac{{{{\left[ {1 - {{\left( {\frac{{{d_{(k)}}}}{{{d_{(K)}}}}} \right)}^2}} \right]}^2}}}{{\sum\limits_{k = 1}^K {{{\left[ {1 - {{\left( {\frac{{{d_{(k)}}}}{{{d_{(K)}}}}} \right)}^2}} \right]}^2}} }} $$
    (6)
  • Step 13. Bootstrap (Venables and Ripley 2002) the K rainfall values (step 11) using the weights w k , k = 1, …, K (Step 12) to generate an ensemble of rainfalls for year i.

  • Step 14. For each of the years 1976–2006, repeat steps 3 through 13 to obtain an ensemble rainfall reconstruction.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Opitz-Stapleton, S., Gangopadhyay, S. A non-parametric, statistical downscaling algorithm applied to the Rohini River Basin, Nepal. Theor Appl Climatol 103, 375–386 (2011). https://doi.org/10.1007/s00704-010-0301-z

Download citation

Keywords

  • Geopotential Height
  • Climate Change Scenario
  • Indian Ocean Dipole
  • Disaster Risk Reduction
  • Statistical Downscaling