Theoretical and Applied Climatology

, Volume 100, Issue 3–4, pp 325–335 | Cite as

Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

  • Alfredo Peña
  • Sven-Erik Gryning
  • Charlotte Bay Hasager
Original Paper

Abstract

Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.

References

  1. Batchvarova E, Gryning S-E (1991) Applied model for the height of the daytime mixed layer. Boundary-Layer Meteorol 56:261–274CrossRefGoogle Scholar
  2. Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102CrossRefGoogle Scholar
  3. Blackadar AK, Tennekes H (1968) Asymptotic similarity in neutral barotropic planetary boundary layers. J Atmos Sci 25:1015–1020CrossRefGoogle Scholar
  4. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  5. Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30:788–794CrossRefGoogle Scholar
  6. Courtney M, Wagner R, Lindelöw P (2008) Testing and comparison of lidars for profile and turbulence measurements in wind energy. Earth Environ Sci Conf Ser 1:012 021 (14 pp)Google Scholar
  7. Emeis S, Münkel C, Vogt S, Müller WJ, Schäfer K (2004) Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements. Atmos Environ 38:273–286CrossRefGoogle Scholar
  8. Emeis S, Schäfer K (2006) Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Boundary-Layer Meteorol 121:377–385CrossRefGoogle Scholar
  9. Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sensing of the mixing-layer height—a review. Meteorol Z 17(5):621–630CrossRefGoogle Scholar
  10. Eresmaa N, Karppinen A, Joffre SM, Säsänen J, Talvitie H (2006) Mixing height determination by ceilometer. Atmos Chem Phys 6:1485–1493CrossRefGoogle Scholar
  11. Estoque MA (1973) Tower micrometeorogy. In: Haugeb DA (ed) Workshop on micrometeorolgy. American Meteorology Society, Boston, pp 217–270Google Scholar
  12. Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol 119:431–447CrossRefGoogle Scholar
  13. Grachev AA, Fairall CW, Bradley EF (2000) Convective profile constraints revisited. Boundary-Layer Meteorol 94:495–515CrossRefGoogle Scholar
  14. Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorol 124:251–268CrossRefGoogle Scholar
  15. Hess GD, Garratt JR (2002) Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: part i. Overview. Boundary-Layer Meteorol 104:333–358CrossRefGoogle Scholar
  16. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78CrossRefGoogle Scholar
  17. Lettau H (1950) A re-examination of the “Leipzig wind profile” considering some relations between wind and turbulence in the frictional layer. Tellus 2:125–129CrossRefGoogle Scholar
  18. Lettau HH (1962) Theoretical wind spirals in the boundary layer of a barotropic atmosphere. Beitr Phys Atmos 35:195–212Google Scholar
  19. Lindelöw P, Courtney M, Parmentier R, Cariou JP (2008) Wind shear proportional errors in the horizontal wind speed sensed by foused, range gated lidars. J Phys Conf Ser 1:012 023 (10 pp)Google Scholar
  20. Mann J et al (2008) Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Earth Environ Sci Conf Ser 1:012 012 (6 pp)Google Scholar
  21. Monin AS, Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz Inst AN SSSR 24(151):163–187Google Scholar
  22. Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol 2:7–29CrossRefGoogle Scholar
  23. Ohmstede WD, Appleby JF (1964) Numerical solution of the distribution of wind and turbulence in the planetary boundary layer. Tech. rep., Meteorol. Res. Note No. 8, DA Task 1-A-0-11001-B-021-08 USAERDAAMET-5-64, 43 ppGoogle Scholar
  24. Panofsky HA (1973) Tower micrometeorogy. In: Haugeb DA (ed) Workshop on micrometeorolgy. American Meteorology Society, Boston, pp 151–176Google Scholar
  25. Peña A (2009) Sensing the wind profile. Tech. Rep. Risoe-PhD-45(EN), Risø DTU, 80 ppGoogle Scholar
  26. Peña A, Gryning S-E (2008) Charnock’s roughness length model and non-dimensional wind profiles over the sea. Boundary-Layer Meteorol 128:191–203CrossRefGoogle Scholar
  27. Peña A, Gryning S-E, Hasager CB (2008) Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Boundary-Layer Meteorol 129:479–495CrossRefGoogle Scholar
  28. Peña A, Gryning S-E, Mann J, Hasager CB (2009) Length scales of the neutral wind profile over homogeneous terrain. J Appl Meteor Climatol (in review)Google Scholar
  29. Prandtl L (1925) Bericht über untersuchungen zur ausgebildeten turbulenz. Zs angew Math Mech 5:136–139Google Scholar
  30. Prandtl L (1932) Meteorologische Anwendung der Strömungslehre. Beitr Phys Atmos 19:188–202Google Scholar
  31. Rossby CG, Montgomery RB (1935) The layers of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3(3):101Google Scholar
  32. Steyn DG, Baldi M, Hoff RM (1999) The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J Atmos Ocean Technol 16:953–959CrossRefGoogle Scholar
  33. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 ppGoogle Scholar
  34. Zilitinkevich SS (1975) Resistance laws and prediction equations for the depth of the planetary boundary layer. J Atmos Sci 32:741–752CrossRefGoogle Scholar
  35. Zilitinkevich SS, Mironov DV (1996) A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Bound-Layer Meteorol 81:325–351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alfredo Peña
    • 1
    • 2
  • Sven-Erik Gryning
    • 1
  • Charlotte Bay Hasager
    • 1
  1. 1.Wind Energy Division, Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark
  2. 2.Department of Geography and GeologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations