Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate


The use of high resolution 3D urban raster and vector databases in urban climatology is presented. It applies two different methods to the calculation of continuous sky view factors (SVF), compares their values and considers their usefulness and limitations in urban climate studies. It shows and evaluates the relationship between urban geometry, quantified by SVF, and intra-urban nocturnal temperature variations using areal means in the whole urban area of Szeged, a city located in southeast Hungary. Results from the vector and raster models shows similar SVF values (r 2 = 0.9827). The usefulness of using areal means in SVF-temperature relations is confirmed. The vector and the raster approaches to the derivation of areal means of SVF are both shown to be powerful tools to obtain a general picture of the geometrical conditions of an urban environment.

This is a preview of subscription content, access via your institution.


  1. Z Bottyán J Unger (2003) ArticleTitleA multiple linear statistical model for estimating the mean maximum urban heat island Theor Appl Climatol 75 233–243 Occurrence Handle10.1007/s00704-003-0735-7

    Article  Google Scholar 

  2. Brown MJ, Grimmond CSB, Ratti C (2001) Comparison of methodologies for computing sky view factor in urban environment. International Society of Environmental Hydraulics Conference, Tempe, AZ. Internal Report Los Alamos National Laboratory, Los Alamos, NM, LA-UR-01-4107

  3. I Eliasson (1996) ArticleTitleUrban nocturnal temperatures, street geometry and land use Atmos Environ 30 379–392 Occurrence Handle10.1016/1352-2310(95)00033-X

    Article  Google Scholar 

  4. KC Goh CH Chang (1999) ArticleTitleThe relationship between height to width ratios and the heat island intensity at 22:00 h for Singapore Int J Climatol 19 1011–1023 Occurrence Handle10.1002/(SICI)1097-0088(199907)19:9<1011::AID-JOC411>3.0.CO;2-U

    Article  Google Scholar 

  5. CSB Grimmond TR Oke (1999) ArticleTitleAerodynamic properties of urban areas derived from analysis of surface form J Appl Meteorol 38 1262–1292 Occurrence Handle10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2

    Article  Google Scholar 

  6. HE Landsberg (1981) The urban climate Academic Press New York

    Google Scholar 

  7. F Lindberg (2005) ArticleTitleTowards the use of local governmental 3-D data within urban climatology studies Mapping Image Sci 2 32–37

    Google Scholar 

  8. F Lindberg (2007) ArticleTitleModelling the urban climate using a local governmental geo-database Meteorol Appl 14 263–273 Occurrence Handle10.1002/met.29

    Article  Google Scholar 

  9. TR Oke (1981) ArticleTitleCanyon geometry and the nocturnal urban heat island: comparison of scale model and field observations J Climatol 1 237–254 Occurrence Handle10.1002/joc.3370010304

    Article  Google Scholar 

  10. TR Oke (1982) ArticleTitleThe energetic basis of the urban heat island Quart J Roy Meteor Soc 108 1–24

    Google Scholar 

  11. TR Oke (1987) Boundary layer climates Routledge London, New York

    Google Scholar 

  12. TR Oke (1988) ArticleTitleStreet design and urban canopy layer climate Energ Buildings 11 103–113 Occurrence Handle10.1016/0378-7788(88)90026-6

    Article  Google Scholar 

  13. Oke TR (2004) Initial guidance to obtain representative meteorological observation sites. Instruments and Methods of Observation Programme, IOM Report No. 81, WMO/TD No. 1250, Geneva, 51 pp

  14. Ratti CF (2001) Urban analysis for environmental prediction. Darwin College, University of Cambridge, 331 pp

  15. Ratti CF, Richens P (1999) Urban texture analysis with image processing techniques. Proceed CAADFutures99, Atlanta, GA

  16. CF Ratti P Richens (2004) ArticleTitleRaster analysis of urban form Environ Plann B: Planning Design 31 297–309 Occurrence Handle10.1068/b2665

    Article  Google Scholar 

  17. Souza LCL, Rodrigues DS, Mendes JFG (2003) The 3DSkyView extension: an urban geometry acces tool in a geographical information system. In: Klysik K, Oke TR, Fortuniak K, Grimmond CSB, Wibig J (eds) Proc. Fifth Int. Conf. on Urban Climate, Vol. 2. University of Lodz, Lodz, Poland, pp 413–416

  18. DR Streutker (2003) ArticleTitleSatellite-measured growth of the urban heat island of Houston, Texas Remote Sens Environ 85 282–289 Occurrence Handle10.1016/S0034-4257(03)00007-5

    Article  Google Scholar 

  19. M Svensson (2004) ArticleTitleSky view factor analysis – implications for urban air temperature differences Meteorol Appl 11 201–211 Occurrence Handle10.1017/S1350482704001288

    Article  Google Scholar 

  20. J Unger (1996) ArticleTitleHeat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary Theor Appl Climatol 54 147–151 Occurrence Handle10.1007/BF00865157

    Article  Google Scholar 

  21. J Unger (2004) ArticleTitleIntra-urban relationship between surface geometry and urban heat island: review and new approach Climate Res 27 253–264 Occurrence Handle10.3354/cr027253

    Article  Google Scholar 

  22. J Unger (2006) ArticleTitleModelling of the annual mean maximum urban heat island with the application of 2 and 3D surface parameters Climate Res 30 215–226 Occurrence Handle10.3354/cr030215

    Article  Google Scholar 

  23. Unger J (2007) Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int J Environ Pollut (in press)

  24. J Unger Z Sümeghy Á Gulyás Z Bottyán L Mucsi (2001) ArticleTitleLand-use and meteorological aspects of the urban heat island Meteorol Appl 8 189–194 Occurrence Handle10.1017/S1350482701002067

    Article  Google Scholar 

  25. ID Watson GT Johnson (1987) ArticleTitleGraphical estimation of sky view-factors in urban environments J Climatol 7 193–197 Occurrence Handle10.1002/joc.3370070210

    Article  Google Scholar 

  26. (2006)

  27. (2006)

Download references

Author information



Corresponding author

Correspondence to T. Gál.

Additional information

Correspondence: Tamás Gál, Department of Climatology and Landscape Ecology, University of Szeged, PO Box 653, 6701 Szeged, Hungary

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gál, T., Lindberg, F. & Unger, J. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theor Appl Climatol 95, 111–123 (2009).

Download citation


  • Digital Elevation Model
  • Urban Heat Island
  • Urban Climate
  • Solar Altitude
  • Urban Canopy Layer