Skip to main content
Log in

Evaluation of backward and forward Lagrangian footprint models in the surface layer

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

We ran a Lagrangian stochastic (LS) dispersion model in both forward-in-time and backward-in-time ways to derive footprints. Three Eulerian analytical footprint models were compared with this Lagrangian model for a wide atmospheric stability range. Despite some differences among the three analytical footprint models, their results generally agreed. Results from the forward LS simulations agreed well with the analytical solutions for both concentration footprints and flux footprints, if turbulent parameters were properly prescribed. Quantitative equivalence between the forward and backward Lagrangian footprint estimates was demonstrated. However, concentration footprint derived by backward LS simulation can be seriously contaminated by numerical errors. A ‘test-adjustment’ scheme treating the temporal integration, and a ‘buffer’ layer treating the surface reflection of the LS particles eliminate numerical errors. Forward LS simulations or the flux footprint estimates were quite insensitive to these errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • JA Businger JC Wyngaard Y Izumi EF Bradley (1971) ArticleTitleFlux profile relationships in the atmospheric surface layer J Atmos Sci 28 181–189 Occurrence Handle10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Article  Google Scholar 

  • X-H Cai MY Leclerc (2007) ArticleTitleForward-in-time and backward-in-time dispersion in the convective boundary layer and their equivalence on concentration footprint Bound-Layer Meteor 123 201–218 Occurrence Handle10.1007/s10546-006-9141-x

    Article  Google Scholar 

  • X-H Cai R Zhang Y Li (2006) ArticleTitleA large eddy simulation and Lagrangian stochastic study of heavy particle dispersion in the convective boundary layer Bound-Layer Meteor 120 413–435 Occurrence Handle10.1007/s10546-006-9061-9

    Article  Google Scholar 

  • SJ Caughey JC Wyngaard JC Kaimal (1979) ArticleTitleTurbulence in the evolving stable boundary layer J Atmos Sci 36 1041–1052

    Google Scholar 

  • AJ Dyer (1974) ArticleTitleA review of flux-profile relationships Bound-Layer Meteor 7 363–372 Occurrence Handle10.1007/BF00240838

    Article  Google Scholar 

  • D Finn B Lamb MY Leclerc TW Horst (1996) ArticleTitleExperimental evaluation of analytical and Lagrangian surface-layer flux footprint models Bound-Layer Meteor 80 283–308

    Google Scholar 

  • TK Flesch (1996) ArticleTitleThe footprint for flux measurements, from backward Lagrangian stochastic models Bound-Layer Meteor 78 399–404 Occurrence Handle10.1007/BF00120943

    Article  Google Scholar 

  • TK Flesch JD Wilson E Yee (1995) ArticleTitleBackward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions J Appl Meteor 34 1320–1332 Occurrence Handle10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2

    Article  Google Scholar 

  • TK Flesch JD Wilson LA Harper BP Crenna RR Sharpe (2004) ArticleTitleDeducing ground-to-air emissions from observed trace gas concentrations: a field trial J Appl Meteor 43 487–502 Occurrence Handle10.1175/1520-0450(2004)043<0487:DGEFOT>2.0.CO;2

    Article  Google Scholar 

  • T Foken MY Leclerc (2004) ArticleTitleMethods and limitations in validation of footprint models Agric Forest Meteorol 127 223–234 Occurrence Handle10.1016/j.agrformet.2004.07.015

    Article  Google Scholar 

  • JHC Gash (1986) ArticleTitleA note on estimating the effect of a limited fetch on micrometeorologival evaporation measurements Bound-Layer Meteor 35 409–414 Occurrence Handle10.1007/BF00118567

    Article  Google Scholar 

  • M Göckede C Rebmann T Foken (2004) ArticleTitleA combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites Agric Forest Meteorol 127 175–188 Occurrence Handle10.1016/j.agrformet.2004.07.012

    Article  Google Scholar 

  • SE Gryning AP van Ulden SE Larsen (1983) ArticleTitleDispersion from a continueous ground-level source investigated by a K model Quart J Roy Meteor Soc 109 355–364

    Google Scholar 

  • SE Gryning AAM Holtslag JS Irwin B Sivertsen (1987) ArticleTitleApplied dispersion modelling based on meteorological scaling parameters Atmos Environ 21 79–89 Occurrence Handle10.1016/0004-6981(87)90273-3

    Article  Google Scholar 

  • X-F Guo X-H Cai (2005) ArticleTitleFootprint characteristics for scalar concentration in the convective boundary layer Adv Atmos Sci 22 821–830 Occurrence Handle10.1007/BF02918682

    Article  Google Scholar 

  • SR Hanna (1982) Applications in Air Pollution Modeling FTM Nieuwstadt H van Dop (Eds) Atmospheric Turbulence and Air Pollution Modelling D. Reidel Publishing Company Dordrecht, Holland

    Google Scholar 

  • TW Horst JC Weil (1992) ArticleTitleFootprint estimation for scalar flux measurements in the atmospheric surface-layer Bound-Layer Meteor 59 279–296 Occurrence Handle10.1007/BF00119817

    Article  Google Scholar 

  • C-I Hsieh G Katul T-W Chi (2000) ArticleTitleAn approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows Adv Water Res 23 765–772 Occurrence Handle10.1016/S0309-1708(99)00042-1

    Article  Google Scholar 

  • N Kljun P Kastner-Klein E Fedorovich MW Rotach (2004) ArticleTitleEvaluation of Lagrangian footprint model using data from wind tunnel convective boundary layer Agric Forest Meteorol 127 189–201 Occurrence Handle10.1016/j.agrformet.2004.07.013

    Article  Google Scholar 

  • N Kljun R Kormann MW Rotach FX Meixner (2003) ArticleTitleComparison of the Lagragian footprint model LPDM-b with an analytical footprint model Bound-Layer Meteor 106 349–355 Occurrence Handle10.1023/A:1021141223386

    Article  Google Scholar 

  • N Kljun MW Rotach HP Schmid (2002) ArticleTitleA three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications Bound-Layer Meteor 103 205–226 Occurrence Handle10.1023/A:1014556300021

    Article  Google Scholar 

  • R Kormann FX Meixner (2001) ArticleTitleAn analytic footprint model for neutral stratification Bound-Layer Meteor 99 207–224 Occurrence Handle10.1023/A:1018991015119

    Article  Google Scholar 

  • MY Leclerc A Karipot T Prabha G Allwine B Lamb HL Gholz (2003a) ArticleTitleImpact of non-local advection on flux footprints over a tall forest canopy: a tracer flux experiment Agric Forest Meteorol 115 19–30 Occurrence Handle10.1016/S0168-1923(02)00168-5

    Article  Google Scholar 

  • MY Leclerc N Meskhidze D Finn (2003b) ArticleTitleComparison between measured tracer fluxes and footprint model predictions over a homogeneous canopy of intermediate roughness Agric Forest Meteorol 117 145–158 Occurrence Handle10.1016/S0168-1923(03)00043-1

    Article  Google Scholar 

  • MY Leclerc SH Shen B Lamb (1997) ArticleTitleObservations and large-eddy simulation modeling of footprints in the lower convective boundary layer J Geophys Res 102 IssueIDD 9323–9334 Occurrence Handle10.1029/96JD03984

    Article  Google Scholar 

  • MY Leclerc GW Thurtell GE Kidd (1988) ArticleTitleMeasurements and Langevin simulations of mean tracer concentration fields downwind from a circular line source inside and above an alfalfa canopy Bound-Layer Meteor 43 287–308 Occurrence Handle10.1007/BF00128408

    Article  Google Scholar 

  • F Pasquill FB Smith (1983) Atmospheric diffusion West Sussex Press England 437

    Google Scholar 

  • Ü Rannik M Aubinet O Kurbanmuradov KK Sabelfeld T Markkanen T Vesala (2000) ArticleTitleFootprint analysis for measurement over a heterogeneous forest Bound-Layer Meteor 97 137–166 Occurrence Handle10.1023/A:1002702810929

    Article  Google Scholar 

  • HP Schmid (1994) ArticleTitleSource areas for scalars and scalar fluxes Bound-Layer Meteor 67 293–318 Occurrence Handle10.1007/BF00713146

    Article  Google Scholar 

  • HP Schmid (1997) ArticleTitleExperimental design for flux measurements: matching scales of observations and fluxes Agric Forest Meteorol 87 179–200 Occurrence Handle10.1016/S0168-1923(97)00011-7

    Article  Google Scholar 

  • HP Schmid (2002) ArticleTitleFootprint modeling for vegetation atmosphere exchange studies: a review and perspective Agric Forest Meteorol 113 159–183 Occurrence Handle10.1016/S0168-1923(02)00107-7

    Article  Google Scholar 

  • PH Schuepp MY Leclerc JI MacPherson RL Desjardins (1990) ArticleTitleFootprint prediction of scalar fluxes from analytical solutions of diffusion equation Bound-Layer Meteor 50 355–373 Occurrence Handle10.1007/BF00120530

    Article  Google Scholar 

  • Stohl A, Seibert P (2002) User Guide of the FLEXPART particle dispersion model (Version 5.0) [http://www.fw.tum.de/ext/lst/meteo/stohl/]

  • RB Stull (1988) An introduction to boundary layer meteorology Kluwer Academic Publishers Dordrecht 666

    Google Scholar 

  • DJ Thomson (1987) ArticleTitleCriteria for the selection of stochastic models of particle trajectories in turbulent flows J Fluid Mech 180 529–556 Occurrence Handle10.1017/S0022112087001940

    Article  Google Scholar 

  • AP van Ulden (1978) ArticleTitleSimple estimates for vertical diffusion from sources near the ground Atmos Environ 12 2125–2129 Occurrence Handle10.1016/0004-6981(78)90167-1

    Article  Google Scholar 

  • T Vesala Ü Rannik MY Leclerc T Foken K Sabelfeld (2004) ArticleTitleFlux and concentration footprints Agric Forest Meteorol 127 111–116 Occurrence Handle10.1016/j.agrformet.2004.07.007

    Article  Google Scholar 

  • JD Wilson (2000) ArticleTitleTrajectory models for heavy particles in atmospheric turbulence: Comparison with observations J Appl Meteor 39 1894–1912 Occurrence Handle10.1175/1520-0450(2000)039<1894:TMFHPI>2.0.CO;2

    Article  Google Scholar 

  • JD Wilson TK Flesch (1993) ArticleTitleFlow boundaries in random-flight dispersion models: enforcing the well-mixed condition J Appl Meteor 32 1695–1707 Occurrence Handle10.1175/1520-0450(1993)032<1695:FBIRFD>2.0.CO;2

    Article  Google Scholar 

  • JD Wilson GW Thurtell GE Kidd (1981a) ArticleTitleNumerical simulation of particle trajectories in inhomogeneous turbulence. I: Systems with constant turbulent velocity scales Bound-Layer Meteor 21 295–313 Occurrence Handle10.1007/BF00119275

    Article  Google Scholar 

  • JD Wilson GW Thurtell GE Kidd (1981b) ArticleTitleNumerical simulation of particle trajectories in inhomoheneous turbulence. II: Systems with variable turbulent velocity scale Bound-Layer Meteor 21 423–441 Occurrence Handle10.1007/BF02033592

    Article  Google Scholar 

  • JD Wilson GW Thurtell GE Kidd (1981c) ArticleTitleNumerical simulation of particle trajectories in inhomoheneous turbulence. III: comparison of predictions with experimental data for the atmospheric surface layer Bound-Layer Meteor 21 443–463 Occurrence Handle10.1007/BF02033593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Cai.

Additional information

Correspondence: Dr. Xuhui Cai, Rm. 209, Bldg. Lao-di-xue Lou, Department of Environmental Sciences, Peking University, Beijing 100871, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Peng, G., Guo, X. et al. Evaluation of backward and forward Lagrangian footprint models in the surface layer. Theor Appl Climatol 93, 207–223 (2008). https://doi.org/10.1007/s00704-007-0334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-007-0334-0

Keywords

Navigation