Theoretical and Applied Climatology

, Volume 91, Issue 1–4, pp 129–147 | Cite as

Statistical downscaling of hourly and daily climate scenarios for various meteorological variables in South-central Canada

  • C. S. Cheng
  • G. Li
  • Q. Li
  • H. Auld
Article

Summary

A regression-based methodology was used to downscale hourly and daily station-scale meteorological variables from outputs of large-scale general circulation models (GCMs). Meteorological variables include air temperature, dew point, and west–east and south–north wind velocities at the surface and three upper atmospheric levels (925, 850, and 500 hPa), as well as mean sea-level air pressure and total cloud cover. Different regression methods were used to construct downscaling transfer functions for different weather variables. Multiple stepwise regression analysis was used for all weather variables, except total cloud cover. Cumulative logit regression was employed for analysis of cloud cover, since cloud cover is an ordered categorical data format. For both regression procedures, to avoid multicollinearity between explanatory variables, principal components analysis was used to convert inter-correlated weather variables into uncorrelated principal components that were used as predictors. The results demonstrated that the downscaling method was able to capture the relationship between the premises and the response; for example, most hourly downscaling transfer functions could explain over 95% of the total variance for several variables (e.g. surface air temperature, dew point, and air pressure). Downscaling transfer functions were validated using a cross-validation scheme, and it was concluded that the functions for all weather variables used in the study are reliable. Performance of the downscaling method was also evaluated by comparing data distributions and extreme weather characteristics of downscaled GCM historical runs and observations during the period 1961–2000. The results showed that data distributions of downscaled GCM historical runs for all weather variables are significantly similar to those of observations. In addition, extreme characteristics of the downscaled meteorological variables (e.g. temperature, dew point, air pressure, and total cloud cover) were examined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison PD (2000) Logistic Regression Using the SAS System: Theory and Application. Cary, NC: SAS Institute Inc., 288 ppGoogle Scholar
  2. Bárdossy A (1994) Downscaling from GCMs to local climate through stochastic linkages. In: Paoli G (ed) Climate change, uncertainty and decision-making. Waterloo, ON: Institute for Risk Research, pp 33–46Google Scholar
  3. Bass, B, Brook, JR 1997Downscaling procedures as a tool for integration of multiple air issuesEnv Monitor Assess46151174CrossRefGoogle Scholar
  4. Benestad, RE 2002Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensembleClim Res21105125CrossRefGoogle Scholar
  5. Bürger, G 1996Expanded downscaling for generating local weather scenariosClim Res7111128CrossRefGoogle Scholar
  6. Canadian Institute for Climate Study (2005) Canadian climate impacts scenarios. http://www.cics.uvic.ca/scenarios/data/select.cgi (accessed December 2005)
  7. Carbone, GJ, Bramante, PD 1995Translating monthly temperature from regional to local scale in the southeastern United StatesClim Res5229242CrossRefGoogle Scholar
  8. Cheng CS, Campbell M, Li Q, Li G, Auld H, Day N, Pengelly D, Gingrich S, Klaassen J, MacIver D, Comer N, Mao Y, Thompson W, Lin H (2005) Differential and combined impacts of winter and summer weather and air pollution due to global warming on human mortality in south-central Canada. Technical Report to Health, Canada, 220 ppGoogle Scholar
  9. Cheng CS, Campbell M, Li Q, Li G, Auld H, Day H, Pengelly D, Gingrich S, Yap D (2006) A synoptic climatological approach to assess climatic impact on air quality in south-central Canada. Part II: Future estimates. Water Air Soil Pollut (DOI 10.1007/s11270-006-9326-4)Google Scholar
  10. Cheng, S 1991Synoptic climatological categorization and human mortality in Shanghai, ChinaProceedings of the Middle States Division Association of American Geographers24511Google Scholar
  11. Coulibaly, P, Dibike, YB, Anctil, F 2005Downscaling precipitation and temperature with temporal neural networksJ Hydrometeorol6483496CrossRefGoogle Scholar
  12. Davis, JC 1986Statistics and data analysis in geology2John Wiley & SonsNew York99103Google Scholar
  13. Environment Canada (2006) DATA. http://www.cccma.bc.ec.gc.ca/data/data.shtml (accessed July 2006)
  14. Glickman, TS 2000Glossary of meteorology2American Meteorological SocietyBoston, MA855Google Scholar
  15. Grotch, SL, MacCracken, MC 1991The use of general circulation models to predict regional climatic changeJ Clim4286303CrossRefGoogle Scholar
  16. Guest, CS, Willson, K, Woodward, AJ, Hennessy, K, Kalkstein, LS, Skinner, C, McMichael, AJ 1999Climate and mortality in Australia: retrospective study, 1979–1990, and predicted impacts in five major cities in 2030Clim Res13115CrossRefGoogle Scholar
  17. Gyalistras, D, von Storch, H, Fischlin, A, Beniston, M 1994Linking GCM-simulated climate changes to ecosystem models: case studies of statistical downscaling in the AlpsClim Res4167189CrossRefGoogle Scholar
  18. Hanssen-Bauer, I, Achberger, C, Benestad, RE, Chen, D, Førland, EJ 2005Statistical downscaling of climate scenarios over ScandinaviaClim Res29255268CrossRefGoogle Scholar
  19. Hewitson, BC, Crane, RG 1992Large-scale atmospheric controls on local precipitation in Tropical MexicoGeophys Res Lett1918351838CrossRefGoogle Scholar
  20. Hewitson, BC, Crane, RG 1996Climate downscaling: techniques and applicationClim Res71326CrossRefGoogle Scholar
  21. Huth, R 1999Statistical downscaling in central Europe: evaluation of methods and potential predictorsClim Res1391101CrossRefGoogle Scholar
  22. IPCC2001Climate change 2001: the scientific basisCambridge University PressCambridge881Google Scholar
  23. Kalkstein, LS 1991A new approach to evaluate the impact of climate on human mortalityEnviron Health Perspect96145150CrossRefGoogle Scholar
  24. Kalkstein, LS, Corrigan, P 1986A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrationsAnn Assoc Am Geogr76381395CrossRefGoogle Scholar
  25. Kalkstein, LS, Greene, JS 1997An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate changeEnviron Health Perspect1058493CrossRefGoogle Scholar
  26. Kalnay, E, Kanamitsu, M, Kistler, R, Collins, W, Deaven, D, Gandin, L, Iredell, M, Saha, S, White, G, Woollen, J, Zhu, Y, Chelliah, M, Ebisuzaki, W, Higgins, W, Janowiak, J, Mo, KC, Ropelewski, C, Wang, J, Leetmaa, A, Reynolds, R, Jenne, R, Joseph, D 1996The NCEP/NCAR 40-year reanalysis projectBull Amer Meteor Soc77437471CrossRefGoogle Scholar
  27. Kettle, H, Thompson, R 2004Statistical downscaling in European mountains: verification of reconstructed air temperatureClim Res2697112CrossRefGoogle Scholar
  28. Kidson, JW, Thompson, CS 1998A comparison of statistical and model-based downscaling techniques for estimating local climate variationsJ Clim11735753CrossRefGoogle Scholar
  29. Kim, JW, Chang, JT, Baker, NL, Wilks, DS, Gates, WL 1984The statistical problem of climate inversion: determination of the relationship between local and large-scale climateMon Wea Rev11220692077CrossRefGoogle Scholar
  30. Kistler, R, Kalnay, E, Collins, W, Saha, S, White, G, Woollen, J, Chelliah, M, Ebisuzaki, W, Kanamitsu, M, Kousky, V, van den Dool, H, Jenne, R, Fiorino, M 2001The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentationBull Amer Meteor Soc82247267CrossRefGoogle Scholar
  31. Klein, WH, Glahn, HR 1974Forecasting local weather by means of model output statisticsBull Amer Meteor Soc5512171227CrossRefGoogle Scholar
  32. McGregor, GR, Walters, S, Wordley, J 1999Daily hospital respiratory admissions and winter air mass types, Birmingham, UKInt J Biomet432130CrossRefGoogle Scholar
  33. Neter, J, Kutner, MH, Wasserman, W, Nachtsheim, CJ 1996Applied linear statistical models4WCB/McGraw-Hill Inc.Boston, MA1408Google Scholar
  34. Nichols, MC, Kalkstein, LS, Cheng, S 1995Possible human health impacts of a global warmingWorld Resour Rev777103Google Scholar
  35. PCMDI (2006) IPCC model output. http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php (accessed July 2006)
  36. Penlap, EK, Matulla, C, von Storch, H, Kamga, FM 2004Downscaling of GCM scenarios to assess precipitation changes in the little rainy season (March–June) in CameroonClim Res268596CrossRefGoogle Scholar
  37. Pope, CA,III, Kalkstein, LS 1996Synoptic weather modeling and estimates of the exposure-response relationship between daily mortality and particulate air pollutionEnviron Health Perspect104414420CrossRefGoogle Scholar
  38. SAS Institute Inc (2006a) The AUTOREG procedure: Regression with autocorrelation errors. http://support.sas.com/91doc/docMainpage.jsp (accessed October 2006)
  39. SAS Institute Inc (2006b) SAS online manual: Testing for autocorrelation. http://support.sas.com/91doc/docMainpage.jsp (accessed October 2006)
  40. Schoof, JT, Pryor, SC 2001Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networksInt J Climatol21773790CrossRefGoogle Scholar
  41. Schubert, S, Henderson-Sellers, A 1997A statistical model to downscale local daily temperature extremes from synoptic-scale atmospheric circulation patterns in the Australian regionClim Dyn13223234CrossRefGoogle Scholar
  42. Sheridan, SC, Kalkstein, LS 2004Progress in heat watch-warning system technologyBull Amer Meteor Soc8519311941CrossRefGoogle Scholar
  43. Solman, SA, Nuñez, MN 1999Local estimates of global climate change: a statistical downscaling approachInt J Climatol19835861CrossRefGoogle Scholar
  44. von Storch, H, Zorita, E, Cubasch, U 1993Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertimeJ Clim611611171CrossRefGoogle Scholar
  45. Wigley, TML, Jones, PD, Briffa, KR, Smith, G 1990Obtaining sub-grid-scale information from coarse-resolution general circulation model outputJ Geophys Res9519431953CrossRefGoogle Scholar
  46. Wilby, RL, Wigley, TML 1997Downscaling general circulation model output: a review of methods and limitationsProg Phys Geo21530548CrossRefGoogle Scholar
  47. Wilby, RL, Hassan, H, Hanaki, K 1998Statistical downscaling of hydrometeorlogical variables using general circulation model outputJ Hydrol205119CrossRefGoogle Scholar
  48. Wilby, RL, Hay, LE, Gutowski, WJ,Jr, Arritt, RW, Takle, ES, Pan, Z, Leavesley, GH, Clark, MP 2000Hydrological responses to dynamically and statistically downscaled climate model outputGeophys Res Lett2711991202CrossRefGoogle Scholar
  49. Wilby, RL, Dawson, CW, Barrow, EM 2002SDSM – a decision support tool for the assessment of regional climate change impactsEnv Mod Soft17147159Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • C. S. Cheng
    • 1
  • G. Li
    • 1
  • Q. Li
    • 1
  • H. Auld
    • 2
  1. 1.Meteorological Service of Canada (MSC) Branch-Ontario, Environment CanadaTorontoCanada
  2. 2.Adaptation and Impacts Research DivisionMSC Branch, Environment CanadaTorontoCanada

Personalised recommendations