Carbon cycle–climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity

  • A. V. Eliseev
  • I. I. Mokhov
Article

Summary

A series of sensitivity runs have been performed with a coupled climate–carbon cycle model. The climatic component consists of the climate model of intermediate complexity IAP RAS CM. The carbon cycle component is formulated as a simple zero-dimensional model. Its terrestrial part includes gross photosynthesis, and plant and soil respirations, depending on temperature via Q10-relationships (Lenton, 2000). Oceanic uptake of anthropogenic carbon is formulated is a bi-linear function of tendencies of atmospheric concentration of CO2 and globally averaged annual mean sea surface temperature. The model is forced by the historical industrial and land use emissions of carbon dioxide for the second half of the 19th and the whole of the 20th centuries, and by the emission scenario SRES A2 for the 21st century. For the standard set of the governing parameters, the model realistically captures the main features of the Earth’s observed carbon cycle. A large number of simulations have been performed, perturbing the governing parameters of the terrestrial carbon cycle model. In addition, the climate part is perturbed, either by zeroing or artificially increasing the climate model sensitivity to the doubling of the atmospheric CO2 concentration. Performing the above mentioned perturbations, it is possible to mimic most of the range found in the C4MIP simulations. In this way, a wide range of the climate–carbon cycle feedback strengths is obtained, differing even in the sign of the feedback. If the performed simulations are subjected to the constraints of a maximum allowed deviation of the simulated atmospheric CO2 concentration (pCO2(a)) from the observed values and correspondence between simulated and observed terrestrial uptakes, it is possible to narrow the corresponding uncertainty range. Among these constraints, considering pCO2(a) and uptakes are both important. However, the terrestrial uptakes constrain the simulations more effectively than the oceanic ones. These constraints, while useful, are still unable to rule out both extremely strong positive and modest negative climate–carbon cycle feedback.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, B, White, A, Lenton, TM 2004An analysis of some diverse approaches to modelling terrestrial net primary productivityEcol Mod177353391CrossRefGoogle Scholar
  2. Brovkin, V, Bendtsen, J, Claussen, M, Ganopolski, A, Kubatzki, C, Petoukhov, V, Andreev, A 2002Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 modelGlob Biogeochem Cycles161139CrossRefGoogle Scholar
  3. Brovkin, V, Sitch, S, Bloh von, W, Claussen, M, Bauer, E, Cramer, W 2004Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 yearsGlob Change Biol1012531266CrossRefGoogle Scholar
  4. Budyko, MIIzrael, YA eds. 1991Anthropogenic climate changeArizona Univ. PressTucsonGoogle Scholar
  5. Cox, PM, Betts, RA, Collins, M, Harris, PP, Huntingford, C, Jones, CD 2004Amazonian forest dieback under climate–carbon cycle projections for the 21st centuryTheor Appl Climatol78137156CrossRefGoogle Scholar
  6. Cox, PM, Betts, RA, Jones, CD, Spall, SA, Totterdell, IJ 2000Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate modelNature408184187CrossRefGoogle Scholar
  7. Dufresne, J-L, Friedlingstein, P, Berthelot, M, Bopp, L, Ciais, P, Fairhead, L, Le Treut, H, Monfray, P 2002On the magnitude of positive feedback between future climate change and the carbon cycleGeophys Res Lett291405CrossRefGoogle Scholar
  8. Eliseev AV, Mokhov II, Karpenko AA (2006) Variations of climate and carbon cycle in the 20th–21st centuries in climate model of intermediate complexity. Izvestiya, Atmos Ocean Phys 42 (in press)Google Scholar
  9. Farquhar, GD, Caemmerer von, S, Berry, JA 1980A biochemical model of photosynthetic CO2 assimilation in leaves of c3 speciesPlanta1497890CrossRefGoogle Scholar
  10. Forest, CE, Stone, PH, Sokolov, AP 2006Estimated PDFs of climate system properties including natural and anthropogenic forcingsGeophys Res Lett33L01705CrossRefGoogle Scholar
  11. Friedlingstein, P, Bopp, L, Ciais, P, Dufresne, J-L, Fairhead, L, Le Treut, H, Monfray, P, Orr, J 2001Positive feedback between future climate change and the carbon cycleGeophys Res Lett2815431546CrossRefGoogle Scholar
  12. Friedlingstein P, Cox P, Betts R, Bopp L, Bloh von W, Brovkin V, Doney S, Eby M, Fung I, Govindasamy B, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) J Climate Climate–carbon cycle feedback analysis, results from the C4MIP model intercomparison (accepted)Google Scholar
  13. Friedlingstein, P, Dufresne, J-L, Cox, PM, Rayner, P 2003How positive is the feedback between climate change and the carbon cycle?Tellus55B692700Google Scholar
  14. Govindasamy, B, Thompson, S, Mirin, A, Wickett, M, Caldeira, K, Delire, C 2005Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle modelTellus57B153163Google Scholar
  15. Handorf, D, Petoukhov, VK, Dethloff, K, Eliseev, AV, Weisheimer, A, Mokhov, II 1999Decadal climate variability in a coupled atmosphere-ocean climate model of moderate complexityJ Geophys Res1042725327275CrossRefGoogle Scholar
  16. Houghton, JTCallander, BAVarney, SK eds. 1992Climate change: the supplementary report to the IPCC scientific assessment, intergovernmental panel on climate changeCambridge University PressCambridge198Google Scholar
  17. Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden van der PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: Cambridge University Press, 881 ppGoogle Scholar
  18. Houghton, RA 2003Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000Tellus55B378390Google Scholar
  19. House, JI, Prentice, IC, Ramankutty, N, Houghton, RA, Heimann, M 2003Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinksTellus55B345363Google Scholar
  20. Huntingford, C, Cox, PM, Lenton, TM 2000Contrasting responses of a simple terrestrial ecosystem model to global changeEcol Mod1774158CrossRefGoogle Scholar
  21. Huntingford, C, Harris, PP, Gedney, N, Cox, PM, Betts, RA, Marengo, JA, Gash, JHC 2004Using a GCM analogue model to investigate the potential for Amazonian forest diebackTheor Appl Climatol78177185CrossRefGoogle Scholar
  22. Jones CD, Cox PM (2001) Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmos Sci LettGoogle Scholar
  23. Jones, CD, Cox, PM, Essery, RLH, Roberts, DL, Woodage, MJ 2003Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosolsGeophys Res Lett301479CrossRefGoogle Scholar
  24. Jones CD, Cox PM, Huntingford C (2006) Climate–carbon cycle feedbacks under stabilisation: uncertainty and observational constraints. Tellus 58B (in press)Google Scholar
  25. Jones, PD, New, M, Parker, DE, Martin, S, Rigor, IG 1999Surface air temperature and its changes over the past 150 yearsRev Geophys37173199CrossRefGoogle Scholar
  26. Keeling, CD, Chine, JFS, Whorf, TP 1996Increased activity of northern vegetation inferred from atmospheric CO2 measurementsNature382146149CrossRefGoogle Scholar
  27. Kwon, O, Schnoor, JL 1994Simple global carbon model: The atmosphere-terrestrial biosphere-ocean interactionGlob Biogeochem Cycles8295305CrossRefGoogle Scholar
  28. Le Quéré, C, Aumant, O, Bopp, L, Bousquet, P, Ciais, P, Francey, R, Heimann, M, Keeling, RF, Kheshgi, H, Peylin, P, Piper, SC, Prentice, IC, Rayner, P 2003Two decades of ocean CO2 sink and variabilityTellus55B649656Google Scholar
  29. Lenton, TM 2000Land and ocean carbon cycle feedback effects on global warming in a simple Earth system modelTellus52B11591188Google Scholar
  30. Lloyd, J, Taylor, JA 1994On the temperature dependence of soil respirationFunc Ecol8315323CrossRefGoogle Scholar
  31. Marland G, Boden TA, Andres RJ (2005) Global, regional, and national CO2 emissions. Trends: a compendium of data on global change. carbon dioxide information analysis center. Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TennGoogle Scholar
  32. Matthews, HD, Weaver, AJ, Meissner, KJ 2005Terrestrial carbon cycle dynamics under recent and future climate changeJ Climate1816091628CrossRefGoogle Scholar
  33. Matthews, HD, Weaver, AJ, Meissner, KJ, Gillett, NP, Eby, M 2004Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycleClim Dyn22461479CrossRefGoogle Scholar
  34. Melillo, JM, Steudler, PA, Aber, JD, Newkirk, K, Lux, H, Bowles, FP, Catricala, C, Magill, A, Ahrens, T, Morrisseau, S 2002Soil warming and carbon-cycle feedbacks to the climate systemScience29821732176CrossRefGoogle Scholar
  35. Melnikov, NB, O’Neill, BC 2006Learning about the carbon cycle from global budget dataGeophys Res Lett33L02705CrossRefGoogle Scholar
  36. Mokhov, II, Demchenko, PF, Eliseev, AV, Khon, VCh, Khvorostyanov, DV 2002Estimation of global and regional climate changes during the 19th–21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcingIzvestiya, Atmos Ocean Phys38555568Google Scholar
  37. Mokhov, II, Eliseev, AV, Demchenko, PF, Khon, VCh, Akperov, MG, Arzhanov, MM, Karpenko, AA, Tikhonov, VA, Chernokulsky, AV, Sigaeva, EV 2005Climate changes and their assessment based on the IAP RAS global model simulationsDoklady Earth Sci402591595Google Scholar
  38. Mokhov, II, Eliseev, AV, Karpenko, AA 2006Sensitivity of the IFA RAN Global Climate Model with an interactive carbon cycle to anthropogenic influenceDoklady Earth Sci407424428CrossRefGoogle Scholar
  39. Patra, PK, Maksyutov, S, Ishizawa, M, Nakazawa, T, Takahashi, T, Ukita, J 2005Interannual and decadal changes in the sea–air CO2> flux from atmospheric CO2 inverse modelingGlob Biogeochem Cycles19GB4013CrossRefGoogle Scholar
  40. Petoukhov, V, Claussen, M, Berger, A, Crucifix, M, Eby, M, Eliseev, AV, Fichefet, T, Ganopolski, A, Goosse, H, Kamenkovich, I, Mokhov, II, Montoya, M, Mysak, LA, Sokolov, A, Stone, P, Wang, Z, Weaver, A 2005EMIC intercomparison project (EMIP-CO2): Comparative analysis of EMIC simulations of current climate and equilibrium and transient reponses to atmospheric CO2 doublingClim Dyn25363385CrossRefGoogle Scholar
  41. Petoukhov, VK, Mokhov, II, Eliseev, AV, Semenov, VA 1998The IAP RAS global climate modelDialogue-MSUMoscow110Google Scholar
  42. Plattner, G-K, Joos, F, Stocker, TF 2002Revision of the global carbon budget due to changing air–sea oxygen fluxesGlob Biogeochem Cycles161096CrossRefGoogle Scholar
  43. Raich, JW, Schlesinger, WH 1992The global carbon dioxide flux in soil respiration and its relationship to vegetation and climateTellus44B8199Google Scholar
  44. Sabine, CL, Feely, RA, Gruber, N, Key, RM, Lee, K, Bullister, JL, Wanninkhof, R, Wong, CS, Wallace, DWR, Tilbrook, B, Millero, FJ, Peng, T-H, Kozyr, A, Ono, T, Rios, AF 2004The oceanic sink for anthropogenic CO2Science305367371CrossRefGoogle Scholar
  45. Siegenthaler, U, Sarmiento, JL 1993Atmospheric carbon dioxide and the oceanNature365119125CrossRefGoogle Scholar
  46. Stainforth, DA, Aina, T, Christensen, C, Collins, M, Faull, N, Frame, DJ, Kettleborough, JA, Knight, S, Martin, A, Murphy, JM, Piani, C, Sexton, D, Smith, LA, Spicer, RA, Thorpe, AJ, Allen, MR 2005Uncertainty in predictions of the climate response to rising levels of greenhouse gasesNature433403406CrossRefGoogle Scholar
  47. Svirezhev, YU, Krapivin, VF, Tarko, AM 1985

    Modeling of the main biosphere cycles

    Malone, TFRoederer, JS eds. Global changeCambridge University PressCambridge298313
    Google Scholar
  48. Thomas, H, England, MH, Ittekkot, V 2001An off-line 3D model of anthropogenic CO2 uptake by the oceansGeophys Res Lett28547550CrossRefGoogle Scholar
  49. Trumbore, SE, Chadwick, OA, Amundsen, R 1996Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature changeScience272393396CrossRefGoogle Scholar
  50. Zeng, N, Qian, H, Roedenbeck, C, Heimann, M 2005Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycleGeophys Res Lett32L22709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. V. Eliseev
    • 1
  • I. I. Mokhov
    • 1
  1. 1.A. M. Obukhov Institute of Atmospheric Physics RASMoscowRussia

Personalised recommendations