Theoretical and Applied Climatology

, Volume 86, Issue 1–4, pp 229–246 | Cite as

Domain choice in an experimental nested modeling prediction system for South America

  • S. A. Rauscher
  • A. Seth
  • J.-H. Qian
  • S. J. Camargo


The purposes of this paper are to evaluate the new version of the regional model, RegCM3, over South America for two test seasons, and to select a domain for use in an experimental nested prediction system, which incorporates RegCM3 and the European Community-Hamburg (ECHAM) general circulation model (GCM). To evaluate RegCM3, control experiments were completed with RegCM3 driven by both the NCEP/NCAR Reanalysis (NNRP) and ECHAM, using a small control domain (D-CTRL) and integration periods of January–March 1983 (El Niño) and January–March 1985 (La Niña). The new version of the regional model captures the primary circulation and rainfall differences between the two years over tropical and subtropical South America. Both the NNRP-driven and ECHAM-driven RegCM3 improve the simulation of the Atlantic intertropical convergence zone (ITCZ) compared to the GCM. However, there are some simulation errors. Irrespective of the driving fields, weak northeasterlies associated with reduced precipitation are observed over the Amazon. The simulation of the South Atlantic convergence zone is poor due to errors in the boundary condition forcing which appear to be amplified by the regional model.

To select a domain for use in an experimental prediction system, sensitivity tests were performed for three domains, each of which includes important regional features and processes of the climate system. The domain sensitivity experiments were designed to determine how domain size and the location of the GCM boundary forcing affect the regional circulation, moisture transport, and rainfall in two years with different large scale conditions. First, the control domain was extended southward to include the exit region of the Andes low level jet (D-LLJ), then eastward to include the South Atlantic subtropical high (D-ATL), and finally westward to include the subsidence region of the South Pacific subtropical high and to permit the regional model more freedom to respond to the increased resolution of the Andes Mountains (D-PAC). In order to quantify differences between the domain experiments, measures of bias, root mean square error, and the spatial correlation pattern were calculated between the model results and the observed data for the seasonal average fields. The results show the GCM driving fields have remarkable control over the RegCM3 simulations. Although no single domain clearly outperforms the others in both seasons, the control domain, D-CTRL, compares most favorably with observations. Over the ITCZ region, the simulations were improved by including a large portion of the South Atlantic subtropical high (D-ATL). The methodology presented here provides a quantitative basis for evaluating domain choice in future studies.


Root Mean Square Error General Circulation Model South Atlantic Convergence Zone Regional Spectral Model South Atlantic Convergence Zone Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes RA, Hsie EY, Kuo YH (1987) Description of the Penn State/NCAR Mesoscale Model Version 4 MM4 NCAR Tech Note, NCAR/TN-282 + STR, 66 pp [Available from the National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307]Google Scholar
  2. Arakawa, A, Schubert, WH 1974Interaction of a cumulus cloud ensemble with the large scale environment, Part IJ Atmos Sci31674701CrossRefGoogle Scholar
  3. Barreiro, M, Chang, P, Saravanan, R 2002Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation modelJ Climate15745763CrossRefGoogle Scholar
  4. Berbery, EH, Barros, VR 2002The hydrologic cycle of the La Plata Basin in South AmericaJ Hydrometeorology3630645CrossRefGoogle Scholar
  5. Chaves RR, Nobre P (2004) Interactions between sea surface temperature over the South Atlantic Ocean and the South Atlantic convergence zone. Geophys Res Lett 31: L03204, doi: 10.1029/2003GL018647Google Scholar
  6. Chiang JHC, Kushnir J, Giannini A (2002) Deconstructing the Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res 107: doi: 10.1029/2000JD00307Google Scholar
  7. Chou SC, Tanajura CAS, Xue Y, Nobre CA (2002) Validation of the coupled Eta/SSiB model over South America. J Geophys Res 107(D20): 8088, doi: 10.1029/2000JD000270Google Scholar
  8. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme, BATS: version 1E as coupled to the NCAR Community Climate Model. NCAR Technical Note No NCAR/TN-387 + STR, Boulder, CO, 72 pp [Available from the National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307]Google Scholar
  9. Druyan, LM, Fulakeza, M, Lonergan, P 2002Dynamic downscaling of seasonal climate predictions over BrazilJ Climate1534113426CrossRefGoogle Scholar
  10. Enfield, DB, Mayer, DA 1997Tropical Atlantic SST variability and its relation to El Niño-Southern OscillationJ Geophys Res102929945CrossRefGoogle Scholar
  11. Fouquart, Y, Bonnel, B 1980Computation of solar heating of the Earth’s atmosphere: a new parameterizationBeitr Phys Atmos533562Google Scholar
  12. Grell, GA 1993Prognostic evaluation of assumptions used by cumulus parameterizationsMon Wea Rev121764787CrossRefGoogle Scholar
  13. Hastenrath, S, Heller, L 1977Dynamics of climatic hazards in Northeast BrazilQuart J Roy Meteor Soc1037792CrossRefGoogle Scholar
  14. Herdies DL, Da Silva A, Silva Dias MAF, Ferreira RN (2002) Moisture budget of the bimodal pattern of the summer circulation over South America. J Geophys Res 107: doi: 10.1029/2001JD000997Google Scholar
  15. Holtslag, AAM, DrBruijn, EIF, Pan, H-L 1990A high resolution air mass transformation model for short-range weather forecastingMon Wea Rev11815611575CrossRefGoogle Scholar
  16. Jones, RG, Murphy, JM, Noguer, M 1995Simulations of climate change over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of lateral boundariesQuart J Roy Meteor Soc12114131449CrossRefGoogle Scholar
  17. Kalnay, E,  et al. 1996The NCEP/NCAR 40-year reanalysis projectBull Amer Met Soc77437471CrossRefGoogle Scholar
  18. Kiehl JT, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR TN-420+STR, 152 pp [Available from the National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307]Google Scholar
  19. Kodama, Y-M 1993Large-scale common features of subtropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part II: conditions of the circulations for generating the STCZsJ Meteor Soc Japan71581610Google Scholar
  20. Kousky, VE, Kagano, MT, Cavalcanti, IA 1984A review of the Southern Oscillation: oceanic-atmospheric circulation change and related rainfall anomaliesTellus36A490504CrossRefGoogle Scholar
  21. Marengo, JA, Cavalcanti, IFA, Satyamurty, P, Trosnikov, I, Nobre, CA, Bonatti, H, Camargo, JP, Sampaio, G, Sanches, MB, Manzi, AO, Castro, CAC, D’Almeida, C, Pezzi, LP, Candido, L 2003Assessment of regional seasonal rainfall predictability using the CPTEC/COLA atmospheric GCMClimate Dynamics21459475CrossRefGoogle Scholar
  22. Misra V, Dirmeyer PA, Kirtman BP (2002a) A comparative study of two land surface schemes in regional climate integrations over South America. J Geophys Res 107(D20): 8080, doi:10.1029/2001JD001284Google Scholar
  23. Misra V, Dirmeyer PA, Kirtman BP, Juang H-MH, Kanamitsu M (2002b) Regional simulation of interannual variability over South America. J Geophys Res 107(D20): 8036, doi:10.1029/2001JD900216Google Scholar
  24. Misra, V, Dirmeyer, PA, Kirtman, BP 2003Dynamic downscaling of seasonal simulations over South AmericaJ Climate16103117CrossRefGoogle Scholar
  25. Misra, V, Kanamitsu, M 2004Anomaly nesting: A methodology to downscale seasonal climate simulations from AGCMsJ Climate1732493262CrossRefGoogle Scholar
  26. Morcrette, J-J, Smith, L, Fouquart, Y 1986Pressure and temperature dependence of the absorption in longwave radiation parameterizationsBeitr Phys Atmos59455469Google Scholar
  27. Nicolini M, Salio P, Katzfey JJ, McGregor JL, Saulo AC (2002) January and July regional climate simulations over South America. J Geophys Res 107: 4637, doi: 10.1029/2001JD000736Google Scholar
  28. Nobre, P, Moura, AD, Sun, L 2001Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with ECHAM3 and NCEP’s regional spectral models at IRIBull Amer Meteor Soc8227872796CrossRefGoogle Scholar
  29. Nobre, P, Shukla, J 1996Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South AmericaJ Climate924642479CrossRefGoogle Scholar
  30. Nogués-Paegle, J, Mo, KC 1997Alternating wet and dry conditions over South America during summerJ Climate125279291Google Scholar
  31. Paegle, J 1998A comparative review of South American low-level jetsMeteorologica237381Google Scholar
  32. Paegle, JN, Mo, KC 2002Linkages between summer rainfall variability over South America and sea surface temperature anomaliesJ Climate1513891407CrossRefGoogle Scholar
  33. Pal, JS, Small, EE, Eltahir, EAB 2000Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCMJ Geophys Res1052957929594CrossRefGoogle Scholar
  34. Pal JS et al. (2006) The ICTP RegCM3 and RegCNET: Regional climate modeling for the developing world. Bull Amer Meteor Soc (in review)Google Scholar
  35. Qian, J-H, Seth, A, Zebiak, S 2003Reinitialized versus continuous simulations for regional climate downscalingMon Wea Rev13128572873CrossRefGoogle Scholar
  36. Reynolds, RW, Rayner, NA, Smith, TA, Stokes, DC, Wang, W 2002An improved in situ and satellite SST analysis for climateJ Climate1516091625CrossRefGoogle Scholar
  37. Roads J, Chen S, Cocke S, Druyan L, Fulakeza M, LaRow T, Lonergan P, Qian J-H, Zebiak S (2003) International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America. J Geophys Res 108(D14): 4425, doi: 10.1029/2002JD003201Google Scholar
  38. Robertson, AW, Mechoso, CR 2000Interannual and interdecadal variability of the South Atlantic convergence zoneMon Wea Rev12829472957CrossRefGoogle Scholar
  39. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dumenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech Rep 218, Max-Planck Institute for Meteorology, Hamburg, Germany, 90 ppGoogle Scholar
  40. Rojas, M, Seth, A 2003Simulation and sensitivity in a nested modeling system for South America. Part II: GCM Boundary ForcingJ Climate1624542471CrossRefGoogle Scholar
  41. Ropelewski, CF, Halpert, MS 1987Global and regional scale precipitation patterns associated with the El Niño/Southern OscillationMon Wea Rev11516061626CrossRefGoogle Scholar
  42. Schwerdtfeger, W 1976Climates of Central and South America, World Survey of ClimatologyElsevier ScienceNew York522Google Scholar
  43. Seluchi, MM, Marengo, JA 2000Tropical-midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and examples of intense eventsInt J Climatol2011671190CrossRefGoogle Scholar
  44. Seth, A, Giorgi, F 1998The effects of domain choice on summer precipitation: Simulation and sensitivity in a regional climate modelJ Climate1026982712CrossRefGoogle Scholar
  45. Seth, A, Rojas, M 2003Simulation and sensitivity in a nested modeling system for South America. Part I: Reanalyses Boundary ForcingJ Climate161524372453CrossRefGoogle Scholar
  46. Simmons, AJ, Burridge, DM, Jarraud, M, Girard, C, Wergen, W 1989The ECMWF medium-range prediction models: Development of the numerical formulations and the impact of increased resolutionMeteorol Atmos Phys402860CrossRefGoogle Scholar
  47. Sun, L, Moncunill, DF, Li, H, Moura, AD, Filho, FAS 2005Climate downscaling over Nordeste, Brazil, using the NCEP RSM97J Climate18551567CrossRefGoogle Scholar
  48. Tiedtke, M 1989A comprehensive mass flux scheme for cumulus parameterization on large scale modelsMon Wea Rev11717791800CrossRefGoogle Scholar
  49. Uvo, CB, Repelli, CA, Zebiak, SE, Kushnir, Y 1998The relationships between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitationJ Climate11551562CrossRefGoogle Scholar
  50. Vannitsem, S, Chomé, F 2005One-way nested regional climate simulations and domain sizeJ Climate18229233CrossRefGoogle Scholar
  51. Virji, H 1981A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud windsMon Wea Rev109599610CrossRefGoogle Scholar
  52. Xie, P, Arkin, PA 1996Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictionsJ Climate9840858CrossRefGoogle Scholar
  53. Zeng, X, Zhao, M, Dickinson, RE 1998Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO dataJ Climate1126282644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. A. Rauscher
    • 1
  • A. Seth
    • 2
  • J.-H. Qian
    • 3
  • S. J. Camargo
    • 3
  1. 1.Physics of Weather and Climate GroupThe Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Department of GeographyUniversity of ConnecticutStorrsUSA
  3. 3.IRI, Columbia UniversityPalisadesUSA

Personalised recommendations