Skip to main content
Log in

Water vapour flux profiles in the convective boundary layer

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Water vapour flux profiles in the atmospheric boundary layer have been derived from measurements of water vapour density fluctuations by a ground-based Differential Absorption Lidar (DIAL) and of vertical wind fluctuations by a ground-based Doppler lidar. The data were collected during the field experiment LITFASS-2003 in May/June 2003 in the area of Lindenberg, Germany. The eddy-correlation method was applied, and error estimates of ±50 W/m2 for latent heat flux were found. Since the sampling error dominates the overall measurement accuracy, time intervals between 60 and 120 min were required for a reliable flux calculation, depending on wind speed. Rather large errors may occur with low wind speed because the diurnal cycle restricts the useful interval length. In the lower height range, these measurements are compared with DIAL/radar-RASS fluxes. The agreement is good when comparing covariance and error values. The lidar flux profiles are well complemented by tower measurements at 50 and 90 m above ground and by area-averaged near surface fluxes from a network of micrometeorological stations. Water vapour flux profiles in the convective boundary layer exhibit different structures mainly depending on the magnitude of the entrainment flux. In situations with dry air above the boundary layer a positive entrainment flux is observed which can even exceed the surface flux. Flux profiles which linearly increase from the surface to the top of the boundary layer are observed as well as profiles which decrease in the lower part and increase in the upper part of the boundary layer. In situations with humid air above the boundary layer the entrainment flux is about zero in the upper part of the boundary layer and the profiles in most cases show a linear decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J Bange F Beyrich D Engelbart (2002) ArticleTitleAirborne measurements of turbulent fluxes during LITFASS-98: Comparison with ground measurements and remote sensing in a case study Theor Appl Climatol 73 35–51 Occurrence Handle10.1007/s00704-002-0692-6

    Article  Google Scholar 

  • J Bange R Roth (1999) ArticleTitleHelicopter-borne flux measurements in the nocturnal boundary layer over land – a case study Bound-Layer Meteorol 92 295–325 Occurrence Handle10.1023/A:1002078712313

    Article  Google Scholar 

  • Beyrich F (2004) Verdunstung über einer heterogenen Landoberfläche, das LITFASS-2003 Experiment, ein Bericht. Technical report, Deutscher Wetterdienst Forschung und Entwicklung, Arbeitsergebnisse Nr. 79, Offenbach, Germany

  • J Bösenberg (1998) ArticleTitleGround-based differential absorption lidar for water-vapor and temperature profiling: methodology Appl Optics 37 3845–3860

    Google Scholar 

  • J Bösenberg (2005) Differential absorption lidar for water vapor and temperature profiling C Weitkamp (Eds) Lidar-range-resolved optical remote sensing of the atmosphere Springer New York 213–240

    Google Scholar 

  • J Bösenberg H Linné (2002) ArticleTitleLaser remote sensing of the planetary boundary layer Meteorol Z 11 233–240 Occurrence Handle10.1127/0941-2948/2002/0011-0233

    Article  Google Scholar 

  • H Cleugh C Grimmond (2001) ArticleTitleModelling regional scale surface energy exchanges and CBL growth in a heterogeneous, urban-rural landscape Bound-Layer Meteorol 98 1–31 Occurrence Handle10.1023/A:1018798928158

    Article  Google Scholar 

  • Ertel K (2004) Application and development of water vapor DIAL systems, Dissertation Univ. Hamburg, http://www.sub.uni-hamburg.de/opus/volltexte/2004/2027/

  • A Giez G Ehret RL Schwiesow KJ Davies DH Lenschow (1999) ArticleTitleWater vapor flux measurements from ground-based vertically pointed water vapor differential absorption and Doppler Lidars J Atmos Oceanic Technol 16 237–250 Occurrence Handle10.1175/1520-0426(1999)016<0237:WVFMFG>2.0.CO;2

    Article  Google Scholar 

  • Hennemuth B, Bange J, Zittel P (2004) Bestimmung des Feuchteflusses in der Grenzschicht über heterogenem Gelände mit bodengebundener Fernerkundung und Helipod. In DACH-Meteorologentagung 2004, Karlruhe, Germany. Dtsch. Meteorol. Ges

  • L Hirsch G Peters (1998) ArticleTitleAbilities and limitations of a radar-RASS wind profiler for the measurement of momentum flux in the planetary boundary layer Meteorol Z NF 7 336–344

    Google Scholar 

  • PR Isaac J Mcaneney R Leuning JM Hacker (2004) ArticleTitleComparison of aircraft and ground-based flux measurements during oasis95 Bound-Layer Meteorol 110 39–67 Occurrence Handle10.1023/A:1026002301152

    Article  Google Scholar 

  • G Katul CI Hsieh D Bowling K Clark N Shurpali A Turnipseed J Albertson K Tu D Hollinger B Evans B Offerle D Anderson D Ellsworth C Vogel R Oren (1999) ArticleTitleSpatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest Bound-Layer Meteorol 93 1–28 Occurrence Handle10.1023/A:1002079602069

    Article  Google Scholar 

  • Lehmann S (2001) Ein Heterodyn-DIAL-System für die simultane Messung von Wasserdampf und Vertikalwind: Aufbau und Erprobung. Technical report, PhD thesis, Universität Hamburg, Hamburg, Germany

  • DH Lenschow J Mann L Kristensen (1994) ArticleTitleHow long is long enough when measuring fluxes and other turbulence statistics? J Atmos Oceanic Technol 11 661–673 Occurrence Handle10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2

    Article  Google Scholar 

  • DH Lenschow B Stankov (1986) ArticleTitleLength scales in the convective boundary layer J Atmos Sci 43 1198–1209 Occurrence Handle10.1175/1520-0469(1986)043<1198:LSITCB>2.0.CO;2

    Article  Google Scholar 

  • Linné H, Bösenberg J (2003) Heterodyne lidar – a tool to investigate dynamic processes in the lower troposphere. In Proc. Sixth Int. Symposium on Tropospheric Profiling, Needs and Technologies, Leipzig, Germany

  • L Mahrt (1976) ArticleTitleMixed layer moisture structure Mon Wea Rev 104 1403–1407 Occurrence Handle10.1175/1520-0493(1976)104<1403:MLMS>2.0.CO;2

    Article  Google Scholar 

  • Mengelkamp H.-T. and the EVA-GRIPS-Team (2004) Eva-grips: Regional evaporation at grid and pixel scale over heterogeneous land surfaces. In Fourth Study Conference on BALTEX, Gudhjem, Denmark. International BALTEX Secretariat Publication

  • M Parlange W Eichinger J Albertson (1995) ArticleTitleRegional scale evaporation and the atmospheric boundary layer Rev Geophys 33 99–124 Occurrence Handle10.1029/94RG03112

    Article  Google Scholar 

  • MP Rao S Casadio G Fiocco M Cacciani AD Sarra D Fua P Castracane (2002) ArticleTitleEstimation of atmospheric water vapour flux profiles in the nocturnal unstable urban boundary layer with doppler sodar and raman lidar Bound-Layer Meteorol 102 39–62 Occurrence Handle10.1023/A:1012794731389

    Article  Google Scholar 

  • C Senff J Bösenberg G Peters (1994) ArticleTitleMeasurement of water vapor flux profiles in the convective boundary layer with lidar and radar-RASS J Atmos Oceanic Technol 11 85–93 Occurrence Handle10.1175/1520-0426(1994)011<0085:MOWVFP>2.0.CO;2

    Article  Google Scholar 

  • MA Strunin T Hiyama J Asanuma T Ohata (2004) ArticleTitleAircraft observations of the development of thermal internal boundary layers and scaling of the convective boundary layer over non-homogeneous land surfaces Bound-Layer Meteorol 111 491–522 Occurrence Handle10.1023/B:BOUN.0000016542.72958.e9

    Article  Google Scholar 

  • R Stull (1988) An introduction to boundary layer meteorology Kluwer Academic Publisher Dordrecht

    Google Scholar 

  • V Wulfmeyer (1998) ArticleTitleGround-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter Appl Optics 37 3804–3824 Occurrence Handle10.1364/AO.37.003804

    Article  Google Scholar 

  • V Wulfmeyer (1999) ArticleTitleInvestigation of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS J Atmos Sci 56 1055–1076 Occurrence Handle10.1175/1520-0469(1999)056<1055:IOTPIT>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linné, H., Hennemuth, B., Bösenberg, J. et al. Water vapour flux profiles in the convective boundary layer. Theor. Appl. Climatol. 87, 201–211 (2007). https://doi.org/10.1007/s00704-005-0191-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-005-0191-7

Keywords

Navigation