Skip to main content
Log in

Climate forecast skill and teleconnections on seasonal time scales over Central Africa based on the North American Multi-Model Ensemble (NMME)

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This study examines the skill of the North American Multi-Model Ensemble (NMME) seasonal precipitation forecast and the influence of tropical sea surface temperature (SST) anomalies and their teleconnections on precipitation prediction skill over Central Africa (CA). The skill is assessed for December–February (DJF), March–May (MAM), June–August (JJA), and September–November (SON) seasons, at 0-, 3-, and 6- month lead time. Results show that for all seasons and at all lead times, models used in this study have tendency to overestimate the observed SSTs over the tropical areas. The multi-model ensemble mean (MME) generally succeeds in capturing the spatial differences in the seasonal mean climatology of precipitation and clearly determines the bi-modal and uni-modal natures of observed precipitation over CA. The El Ninõ-Southern Oscillation 3.4 index (Ninõ3.4), Indian Ocean Dipole (IOD) western pole index (IODWP), and IOD eastern pole index (IODEP) teleconnections with tropical SST are well represented by the MME at all seasons and lead times with a pattern correlation coefficient (PCC) >0.6. The quality of these teleconnections decreases when the lead time increases. The Ninõ3.4-induced precipitation’s teleconnection is better represented in MAM at all lead times, and it is found that precipitation is reinforced over northern CA during the El Ninõ years and weakened during the La Niña years. IODWP and IODEP teleconnections with CA precipitation are well represented in MAM and SON, with PCC > 0.8. The IODWP and IODEP could be a very good indicators to predict the increase or decrease of precipitation in CA during MAM and SON seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Annamalai H, Potemra J, Murtugudde R, McCreary J (2005) Effect of preconditioning on the extreme climate events in the tropical Indian Ocean. J Clim 18(17):3450–3469

    Article  Google Scholar 

  • Ashok K, Chan WL, Motoi T, Yamagata T (2004) Decadal variability of the Indian Ocean dipole. Geophys Res Lett 31(24). https://doi.org/10.1029/2004GL021345

  • Becker E, van den Dool H, Zhang Q (2014) Predictability and forecast skill in NMME. J Clim 27(15):5891–5906

    Article  Google Scholar 

  • Bengtsson L, Körnich H (2016) Impact of a stochastic parametrization of cumulus convection, using cellular automata, in a mesoscale ensemble prediction system. Q J R Meteorol Soc 142(695):1150–1159

    Article  Google Scholar 

  • Bradley AA, Habib M, Schwartz SS (2015) Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach. Water Resour Res 51(9):7382–7400

    Article  Google Scholar 

  • Buizza R, Houtekamer P, Pellerin G, Toth Z, Zhu Y, Wei M (2005) A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Weather Rev 133(5):1076–1097

    Article  Google Scholar 

  • Chattopadhyay R, Rao SA, Sabeerali C, George G, Rao DN, Dhakate A, Salunke K (2016) Large-scale teleconnection patterns of Indian summer monsoon as revealed by CFSv2 retrospective seasonal forecast runs. Int J Climatol 36(9):3297–3313

    Article  Google Scholar 

  • Cottrill A, Hendon HH, Lim EP, Langford S, Shelton K, Charles A, McClymont D, Jones D, Kuleshov Y (2013) Seasonal forecasting in the Pacific using the coupled model POAMA-2. Weather Forecast 28(3):668–680

    Article  Google Scholar 

  • Council NR et al (2010) Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press, Washington, DC

    Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne K et al (2006) GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J Clim 19(5):643–674

  • Doblas-Reyes FJ, Hagedorn R, Palmer T (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting-II. Calibration Comb Tellus A 57:234–252

    Google Scholar 

  • Doblas-Reyes F, Hagedorn R, Palmer T (2006) Developments in dynamical seasonal forecasting relevant to agricultural management. Climate Res 33(1):19–26

    Article  Google Scholar 

  • Duffy P, Arritt R, Coquard J, Gutowski W, Han J, Iorio J, Kim J, Leung LR, Roads J, Zeledon E (2006) Simulations of present and future climates in the western United States with four nested regional climate models. J Clim 19(6):873–895

    Article  Google Scholar 

  • Fotso-Kamga G, Fotso‐Nguemo TC, Diallo I, Nyanchi GT, Yepdo ZD, Chouto S et al (2023) Projected changes in extreme precipitation and temperature events over Central Africa from COSMO‐CLM simulations under the global warming level of 1.5 °C and above. Int J Climatol 43(13):1–22

  • Fotso-Nguemo TC, Chamani R, Yepdo ZD, Sonkoué D, Matsaguim CN, Vondou DA, Tanessong RS (2018) Projected trends of extreme rainfall events from CMIP5 models over Central Africa. Atmosph Sci Lett 19(2):e803

    Article  Google Scholar 

  • Fotso-Nguemo TC, Diallo I, Diakhaté M, Vondou DA, Mbaye ML, Haensler A et al (2019) Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa. Clim Change 155:339–357

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A et al (2015) The climate hazards infrared precipitation with stations a new environmental record for monitoring extremes. Scientific Data 2(150):066

    Google Scholar 

  • Gerlak AK, Guido Z, Vaughan C, Rountree V, Greene C, Liverman D, Trotman AR, Mahon R, Cox SA, Mason SJ et al (2018) Building a framework for process-oriented evaluation of regional climate outlook forums. Weather Clim Soc 10(2):225–239

    Article  Google Scholar 

  • Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A Dyn Meteorol Oceanogr 57(3):219–233

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. Int J Climatol 34(3):623–642

  • Hemri S, Bhend J, Liniger MA, Manzanas R, Siegert S, Stephenson DB, Gutiérrez JM, Brookshaw A, Doblas-Reyes FJ (2020) How to create an operational multi-model of seasonal forecasts? Clim Dyn 55(5):1141–1157

    Article  Google Scholar 

  • Infanti JM, Kirtman BP (2016) Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J Geophys Res Atmosph 121(21):12–690

    Article  Google Scholar 

  • Jiang Y, Zhou L, Roundy PE, Hua W, Raghavendra A (2021) Increasing influence of Indian Ocean dipole on precipitation over central equatorial Africa. Geophys Res Lett 48(8):e2020GL092,370

  • Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137(9):2908–2930

    Article  Google Scholar 

  • Kirtman BP, Min D, Infanti JM, Kinter JL III, Paolino DA, Zhang Q, Van Den Dool H, Saha S, Mendez MP, Becker E et al (2014) The North American multimodel ensemble: phase1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteor Soc 95:585–601

    Article  Google Scholar 

  • Klotzbach PJ, Gray WM (2003) Forecasting September Atlantic basin tropical cyclone activity. Weather Forecast 18(6):1109–1128

    Article  Google Scholar 

  • Krishnamurti T, Stefanova L, Chakraborty A, Vijaya TSV, Cocke S, Bachiochi D, Mackey B (2002) Seasonal forecasts of precipitation anomalies for North American and Asian monsoons. J Meteorol Soc Jpn Ser II 80(6):1415–1426

    Article  Google Scholar 

  • Leutbecher M, Lock SJ, Ollinaho P, Lang ST, Balsamo G, Bechtold P, Bonavita M, Christensen HM, Diamantakis M, Dutra E et al (2017) Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Q J R Meteorol Soc 143(707):2315–2339

    Article  Google Scholar 

  • Merryfield WJ, Lee WS, Boer GJ, Kharin VV, Scinocca JF, Flato GM, Ajayamohan R, Fyfe JC, Tang Y, Polavarapu S (2013) The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon Weather Rev 141(8):2910–2945

  • Mo KC, Lyon B (2015) Global meteorological drought prediction using the North American multi-model ensemble. J Hydrometeorol 16:1409–1424

    Article  Google Scholar 

  • Moihamette F, Pokam WM, Diallo I, Washington R (2022) Extreme Indian Ocean dipole and rainfall variability over Central Africa. Int J Climatol 42(10):1–18

    Article  Google Scholar 

  • Nicholson SE (2019) A review of climate dynamics and climate variability in Eastern Africa. In: The limnology, climatology and paleoclimatology of the East African lakes. pp 25–56

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A et al (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078

    Article  Google Scholar 

  • Pal RK, Sehgal VK, Misra A, Ghosh K, Mohanty U, Rana R (2013) Application of seasonal temperature and rainfall forecast for wheat yield prediction for Palampur, Himachal Pradesh. Int J Agric. Food Sci Technol 4(5):453–460. http://krishi.icar.gov.in/jspui/handle/123456789/34543

  • Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Delécluse P, Déqué M, Diez E, Doblas-Reyes FJ, Feddersen H et al (2004) Development of a European multi-model ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteor Soc 85(6):853–872

    Article  Google Scholar 

  • Palmer T, Shutts G, Hagedorn R, Doblas-Reyes F, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci 33:163–193

    Article  CAS  Google Scholar 

  • Palmer TN, Buizza R, Doblas-Reyes F, Jung T, Leutbecher M, Shutts GJ, Steinheimer M, Weisheimer A (2009) Stochastic parametrization and model uncertainty. Technical Memorandum, pp 1–44

  • Pillai PA, Mohankumar K (2010) Individual and combined influence of El Nino-Southern oscillation and Indian Ocean dipole on the tropospheric biennial oscillation. Q J R Meteorol Soc 136(647):297–304

    Article  Google Scholar 

  • Pillai PA, Rao SA, George G, Rao DN, Mahapatra S, Rajeevan M, Dhakate A, Salunke K (2017) How distinct are the two flavors of El Ninõ in retrospective forecasts of Climate Forecast System version 2 (CFSv2)? Clim Dyn 48(11):3829–3854

    Article  Google Scholar 

  • Pillai PA, Rao SA, Ramu DA, Pradhan M, George G (2018) Seasonal prediction skill of Indian summer monsoon rainfall in NMME models and monsoon mission CFSv2. Int J Climatol 38:e847–e861

    Article  Google Scholar 

  • Pokam MW, Longandjo GN, Moufouma-Okia W, Bell JP, James R, Vondou DA, Haensler A et al (2018) Consequences of 1.5 °C and 2 °C global warming levels for temperature and precipitation changes over Central Africa. Environ Res Lett 13:1–12

    Google Scholar 

  • Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39(9–10):2585–2608

    Article  Google Scholar 

  • Pradhan M, Yadav RK, Ramu Dandi A, Srivastava A, Phani M, Rao SA (2017) Shift in MONSOON-SST teleconnections in the tropical Indian Ocean and ENSEMBLES climate models’ fidelity in its simulation. Int J Climatol 37(5):2280–2294

    Article  Google Scholar 

  • Ramu DA, Sabeerali C, Chattopadhyay R, Rao DN, George G, Dhakate A, Salunke K, Srivastava A, Rao SA (2016) Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J Geophys Res Atmosph 121(5):2205–2221

    Article  CAS  Google Scholar 

  • Rao SA, Chaudhari HS, Pokhrel S, Goswami B (2010) Unusual central Indian drought of summer monsoon 2008: role of southern tropical Indian Ocean warming. J Clim 23(19):5163–5174

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111(3):517–528

    Article  Google Scholar 

  • Ratnam J, Dijkstra H, Behera SK (2020) A machine learning based prediction system for the Indian Ocean Dipole. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool H, Pan HL, Moorthi S, Behringer D et al (2006) The NCEP climate forecast system. J Clim 19(15):3483–3517

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Hy C, Iredell M et al (2014a) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali C, Salunke K, Hazra A, Mahapatra S, Rao AS (2014b) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 34(5):1628–1641

    Article  Google Scholar 

  • Sahai A, Grimm A, Satyan V, Pant G (2003) Long-lead prediction of Indian summer monsoon rainfall from global SST evolution. Clim Dyn 20(7–8):855–863

    Article  Google Scholar 

  • Schepen A, Zhao T, Wang QJ, Robertson DE (2017) A new method for post-processing daily sub-seasonal to seasonal rainfall forecasts from GCMs and evaluation for 12 Australian catchments. Hydrol Earth Syst Sci Discuss:1–27. 10.5194/hess-2017-380

  • Schwierz C, Appenzeller C, Davies HC, Liniger MA, Müller W, Stocker TF, Yoshimori M (2006) Challenges posed by and approaches to the study of seasonal-to-decadal climate variability. Clim Change 79(1–2):31–63

    Article  Google Scholar 

  • Seo KH, Ok J, Son JH, Cha DH (2013) Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J Clim 26(19):7662–7675

    Article  Google Scholar 

  • Shukla J, Mooley D (1987) Empirical prediction of the summer monsoon rainfall over India. Mon Weather Rev 115(3):695–704

    Article  Google Scholar 

  • Shukla S, Roberts J, Hoell A, Funk CC, Robertson F, Kirtman B (2016) Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Clim Dyn 53:1–17

    Google Scholar 

  • Siegmund J, Bliefernicht J, Laux P, Kunstmann H (2015) Toward a seasonal precipitation prediction system for West Africa: Performance of CFSv2 and high-resolution dynamical downscaling. J Geophys Res Atmosph 120(15):7316–7339

    Article  Google Scholar 

  • Slater LJ, Villarini G (2018) Enhancing the predictability of seasonal streamflow with a statistical-dynamical approach. Geophys Res Lett 45(13):6504–6513

    Article  Google Scholar 

  • Slater LJ, Villarini G, Bradley AA (2016) Evaluation of the skill of North-American Multi-Model ensemble (NMME) Global Climate Models in predicting average and extreme precipitation and temperature over the continental USA. Clim Dyn 53:1–16

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296

    Article  Google Scholar 

  • Sonkoué D, Monkam D, Fotso-Nguemo TC, Yepdo ZD, Vondou DA (2019) Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations. Theoret Appl Climatol 137(3):2167–2186

    Article  Google Scholar 

  • Tamoffo AT, Vondou DA, Pokam WM, Haensler A, Yepdo ZD, Fotso-Nguemo TC et al (2019) Daily characteristics of Central African rainfall in the REMO model. Theoret Appl Climatol 137:2351–2368

    Article  Google Scholar 

  • Tanessong RS, Fotso-Nguemo TC, Mbienda AK, Guenang G, Sandjon AT, Kaissassou S, Vondou DA (2020) Assessing climate-system historical forecast project (CHFP) seasonal forecast skill over Central Africa. Theor Appl Climatol 140:1–12

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmosph 106(D7):7183–7192

    Article  Google Scholar 

  • Tchinda AF, Tanessong RS, Mamadou O, Orou JBC (2022) Assessing precipitation seasonal forecasts in Central Africa using North American Multimodel Ensemble (NMME). Theor Appl Climatol 147:1–17

    Article  Google Scholar 

  • Tribbia J (2015) NCAR contribution to a US National Multi-Model Ensemble (NMME) ISI prediction system. Tech. rep., University Corporation for Atmospheric Research, Boulder, CO

  • Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg AT, Zeng F, Anderson W, Balaji V, Dixon K et al (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27(21):7994–8016

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: Selectively interactive systems. Q J R Meteorol Soc 118(507):877–926

    Article  Google Scholar 

  • Weigel AP, Liniger M, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc 134(630):241–260

    Article  Google Scholar 

  • Weisheimer A, Palmer T, Doblas-Reyes F (2011) Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys Res Lett 38(16). https://doi.org/10.1029/2011GL048123

Download references

Acknowledgements

The NMME hindcasts data were downloaded from the International Research Institute for Climate and Society (IRI) data library (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). The authors thank the CPC, IRI, and NCAR staff for creating, updating, and providing free access to the NMME archives. Support for Thierry C. Fotso-Nguemo was provided in part by DAAD within the framework of the climapAfrica programme with funds of the Federal Ministry of Education and Research (grant number 57516494) and the Abdus Salam International Centre for Theoretical Physics (ICTP) through the Associates Programme (2020–2025). Thanks are also expressed to the four anonymous reviewers whose comments and suggestions have substantially improved the first version of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roméo S. Tanessong.

Additional information

Responsible Editor: Clemens Simmer, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6596 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanessong, R.S., Fotso-Nguemo, T.C., Kaissassou, S. et al. Climate forecast skill and teleconnections on seasonal time scales over Central Africa based on the North American Multi-Model Ensemble (NMME). Meteorol Atmos Phys 136, 19 (2024). https://doi.org/10.1007/s00703-024-01018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00703-024-01018-y

Navigation