Advertisement

Comparison of an automated classification system with an empirical classification of circulation patterns over the Pannonian basin, Central Europe

  • Panagiotis Maheras
  • Konstantia Tolika
  • Ioannis Tegoulias
  • Christina Anagnostopoulou
  • Klicász Szpirosz
  • Csaba Károssy
  • László Makra
Original Paper
  • 58 Downloads

Abstract

The aim of the study is to compare the performance of the two classification methods, based on the atmospheric circulation types over the Pannonian basin in Central Europe. Moreover, relationships including seasonal occurrences and correlation coefficients, as well as comparative diagrams of the seasonal occurrences of the circulation types of the two classification systems are presented. When comparing of the automated (objective) and empirical (subjective) classification methods, it was found that the frequency of the empirical anticyclonic (cyclonic) types is much higher (lower) than that of the automated anticyclonic (cyclonic) types both on an annual and seasonal basis. The highest and statistically significant correlations between the circulation types of the two classification systems, as well as those between the cumulated seasonal anticyclonic and cyclonic types occur in winter for both classifications, since the weather-influencing effect of the atmospheric circulation in this season is the most prevalent. Precipitation amounts in Budapest display a decreasing trend in accordance with the decrease in the occurrence of the automated cyclonic types. In contrast, the occurrence of the empirical cyclonic types displays an increasing trend. There occur types in a given classification that are usually accompanied by high ratios of certain types in the other classification.

References

  1. Anagnostopoulou C, Tolika K, Maheras P (2009) Classification of circulation types: a new flexible automated approach applicable of NCEP and GCM datasets. Theor Appl Climatol 96:3–15CrossRefGoogle Scholar
  2. Bárdossy A, Stehlík J, Caspary HJ (2002) Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Clim Res 23:11–22CrossRefGoogle Scholar
  3. Bartholy J, Pongrácz R, Gy Gelybó (2009) Climate signals of the North Atlantic oscillation detected in the Carpathian basin. Appl Ecol Env Res 7:229–240CrossRefGoogle Scholar
  4. Bartoszek K (2017) The main characteristics of atmospheric circulation over east—central Europe from 1871 to 2010. Meteorol Atmos Phys 129:113–129CrossRefGoogle Scholar
  5. Bartzokas A, Metaxas DA (1996) Northern Hemisphere gross circulation types. Climatic change and temperature distribution. Meteorol Zeitschrift 5:99–109Google Scholar
  6. Baur F, Hess P, Nagel H (1944) Kalendar der Groswetterlagen Europas 1881–1939. (Calendar of the large-scale weather situations for Europe.) Bad Homburg, Germany (in German) Google Scholar
  7. Casado MJ, Pastor MA, Doblas-Reyes FJ (2009) Euro-Atlantic circulation types and modes of variability in winter. Theor Appl Climatol 96:17–29CrossRefGoogle Scholar
  8. Demuzere M, Kassomenos P, Philipp A (2011) The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe. Theor Appl Climatol 105:143–166CrossRefGoogle Scholar
  9. Frakes B, Yarnal B (1997) A procedure for blending manual and correlation-based synoptic classifications. Int J Climatol 17:1381–1396CrossRefGoogle Scholar
  10. Gerstengarbe FW, Werner PC, Rüge U (1999) Katalog der Großwetterlagen Europas (1881–1998) nach Paul Hess und Helmuth Brezowsky. [Catalog of the large-scale weather situations for Europe (1881–1998) on Paul Hess and Helmuth Brezowsky.] Potsdam, Offenbach a.M. (Germany). http://www.pikpotsdam.de/~uwerner/gwl/welcome.htm (in German)
  11. Girs AA (1948) Some aspects concerning basic forms of atmospheric circulation. Meteorol Gidrol 3:9–11 (in Russian) Google Scholar
  12. Hess P, Brezowsky H (1952) Katalog der Großwetterlagen Europas. Ber Dt Wetterd in der US-Zone 33, Bad Kissingen, GermanyGoogle Scholar
  13. Hewitson BC, Crane RG (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26CrossRefGoogle Scholar
  14. Huth R (2000) A circulation classification scheme applicable in GCM studies. Theor Appl Climatol 67:1–18CrossRefGoogle Scholar
  15. Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Y, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns: recent advances and applications. Ann NY Acad Sci 1146:105–152CrossRefGoogle Scholar
  16. Jones PD, Hulme M, Brifia KR (1993) A comparison of Lamb circulation types with an objective classification scheme. Int J Climatol 13:655–663CrossRefGoogle Scholar
  17. Kalkstein LS, Corrigan P (1986) A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrations. Ann Assoc Am Geogr 76:381–395CrossRefGoogle Scholar
  18. Kalnay E, Kanamitsu M, Kisdér R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77:437–471CrossRefGoogle Scholar
  19. Károssy C (2016) A Kárpát-medence Péczely-féle makroszinoptikus helyzeteinek a katalógusa (1881–2015). (Catalog of the Péczely’s macrosynoptic types for the Carpathian Basin.) OSKAR, Szombathely (in Hungarian) Google Scholar
  20. Kassomenos P, Flocas HA, Lykoudis S, Petrakis M (1998) Analysis of mesoscale patterns in relation to synoptic conditions over an urban Mediterranean basin. Theor Appl Climatol 59:215–229CrossRefGoogle Scholar
  21. Kassomenos P, Gryparis A, Samoli E, Katsouyanni K, Lykoudis S, Flocas HA (2001) Atmospheric circulation types and daily mortality in Athens, Greece. Environ Health Perspect 109:591–596CrossRefGoogle Scholar
  22. Kassomenos P, Sindosi O, Lolis C, Chaloulakou A (2003) On the relation between seasonal synoptic circulation types and spatial air quality characteristics in Athens, Greece. J Air Waste Manag Assoc 53:309–324CrossRefGoogle Scholar
  23. Kassomenos PA, Gryparis A, Katsouyanni K (2007) On the association between daily mortality and air mass types in Athens, Greece during winter and summer. Int J Biometeorol 51:315–322CrossRefGoogle Scholar
  24. Klicász Sz (1990) Görögország makroszinoptikus helyzetei. (Macrosynoptic types of Greece.) PhD Dissertation, University of Szeged, Szeged, p 85 (in Hungarian) Google Scholar
  25. Kyselý J, Huth R (2006) Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor Appl Climatol 85:13–36CrossRefGoogle Scholar
  26. Lamb HH (1972) British Isles weather types and a register of daily sequence of circulation patterns, 1861–1971. Geophysical Memoir, vol 116. HMSO, London, p 85Google Scholar
  27. Maheras P (1983) Climatologie de la Mer Egée et de ses Marges Continentales. Etude de Climatologie Descriptive et de Climatologie Dynamique. Thèse d’Etat, Atelier de Reproduction de Lille III, Lille, p 787Google Scholar
  28. Maheras P (1988) The synoptic weather types and objective delimitation of the winter period in Greece. Weather 43:40–45CrossRefGoogle Scholar
  29. Maheras P, Patrikas I, Karacostas Th, Anagnostopoulou Ch (2000a) Automatic classification of circulation types in Greece. Methodology, description, frequency, variability and trend analysis. Theor Appl Climatol 67:205–223CrossRefGoogle Scholar
  30. Maheras P, Patrikas I, Anagnostopoulou C (2000b) An objective classification of circulation types in Greece. In: Proceedings of the 5th Hellenic scientific conference in meteorology, climatology and atmospheric physics, 28–30 September 2000, Thessaloniki, National Hellenic Research Foundation, pp 25–33Google Scholar
  31. Makra L (2005) Relation of pollutant concentrations to the Peczely’s large scale weather situations in Szeged, Southern Hungary. Epidemiology 16:S63–S63CrossRefGoogle Scholar
  32. Makra L (2006) Comparison of objective air-mass types and the Peczely weather types and their ability of classifying airborne pollen grain concentrations in Szeged, Hungary. Epidemiology 17:S292–S293CrossRefGoogle Scholar
  33. Makra L (2012) Különböző taxonok pollenjeinek komplex statisztikai elemzése a meteorológiai elemekkel összefüggésben, különös tekintettel a parlagfű pollenjére. Kézirat (Complex pollen-statistical analysis of various taxa, in association with meteorological parameters, with special interest to the pollen of ragweed.) MTA Doktori Értekezés, Thesis (Doctor of the Hungarian Academy of Sciences), dc_299_11, University of Szeged, Szeged, Hungary (in Hungarian), p 123. OAI identifier: oai:real-d.mtak.hu:513. http://real-d.mtak.hu/513/
  34. Makra L, Mika J, Bartzokas A, Sümeghy Z (2007a) Relationship between the Péczely’s large-scale weather types and air pollution levels in Szeged, Southern Hungary. Fresen Environ Bull 16:660–673Google Scholar
  35. Makra L, Juhász M, Mika J, Bartzokas A, Béczi R, Sümeghy Z (2007b) Relationship between the Péczely’s large-scale weather types and airborne pollen grain concentrations for Szeged, Hungary. Grana 46:43–56CrossRefGoogle Scholar
  36. Makra L, Mika J, Bartzokas A, Béczi R, Sümeghy Z (2009) Comparison of objective air-mass types and the Péczely weather types and their ability to classify levels of air pollutants in Szeged, Hungary. In: Makra L, Kambezidis HD (eds) Int J Environ Pollut “Air Pollution” Special Issue 36, pp 81–98Google Scholar
  37. McGregor GR, Bamzelis D (1995) Synoptic typing and its application to the investigation of weather-air pollution relationships, Birmingham, United Kingdom. Theor Appl Climatol 51:223–236CrossRefGoogle Scholar
  38. Mika J (2014) Atmosphere as risk and resource: elektronikus jegyzet Geográfus MSc hallgatók számára (Electronic lecture note for MSc students in Geography). Eszterházy Károly Főiskola (Eszterházy Károly College), Eger, p 163Google Scholar
  39. Péczely Gy (1957a) Áramlási viszonyok Magyarországon különböző makroszinoptikus helyzetekben. (Air flow conditions in different macrosynoptic situations in Hungary.) Időjárás 61:408–419 (in Hungarian) Google Scholar
  40. Péczely Gy (1957b) Grosswetterlagen in Ungarn. Kleinere Veröffentlichungen der Zentralanstalt für Meteorologie, Budapest, Ungarn. (Large-scale weather situations in Hungary. Minor publications of the Central Meteorological Institute, Budapest, Hungary.) Series 30, p 86 (in German) Google Scholar
  41. Péczely Gy (1959) Budapest légszennyeződése különböző makroszinoptikus helyzetekben. (Air pollution of Budapest in different macrosynoptic situations.) Időjárás 63:19–27 (in Hungarian) Google Scholar
  42. Péczely Gy (1961) Magyarország makroszinoptikus helyzeteinek éghajlati jellemzése. (Climatic characterization of macrosynoptic situations of Hungary. (A Központi Meteorológiai Intézet Kisebb Kiadványai. (Minor publications of the Central Meteorological Institute, Hungary.) Series 32, p 128, Budapest (in Hungarian) Google Scholar
  43. Péczely Gy (1983) Magyarország makroszinoptikus helyzeteinek katalógusa (1881–1983). (Catalog of the macrosynoptic types of Hungary.) (Az Országos Meteorológiai Szolgálat Kisebb Kiadványai. (Minor publications of the Hungarian Meteorological Service.) Series 53, p 116, Budapest (in Hungarian) Google Scholar
  44. Perry A, Mayes J (1998) The Lamb weather type catalogue. Weather 53:222–229CrossRefGoogle Scholar
  45. Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Fettweis X, Huth R, James P, Jourdain S, Kreienkamp F, Krennert T, Lykoudis S, Michalides S, Pianko-Kluczynska K, Post P, Rassilla Álvarez D, Schiemann R, Spekat A, Tymvios FS (2010) COST733CAT—a database of weather and circulation type classifications. Phys Chem Earth 35:360–373CrossRefGoogle Scholar
  46. Putniković S, Tošić I (2017) Relationship between atmospheric circulation weather types and seasonal precipitation in Serbia. Meteorol Atmos Phys.  https://doi.org/10.1007/s00703-017-0524-y Google Scholar
  47. Putniković S, Tošić I, Đurđević V (2016) Circulation weather types and their influence on precipitation in Serbia. Meteorol Atmos Phys 128:649–662CrossRefGoogle Scholar
  48. Ramos AM, Sprenger M, Wernli H, Durán-Quesada AM, Lorenzo MN, Gimeno L (2014) A new circulation type classification based upon Lagrangian air trajectories. Front Earth Sci 2(29):1–18Google Scholar
  49. Sheridan SC (2002) The redevelopment of a weather type classification scheme for North America. Int J Climatol 22:51–68CrossRefGoogle Scholar
  50. Sindosi OA, Katsoulis BD, Bartzokas A (2003) An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels. Environ Technol 24:947–962CrossRefGoogle Scholar
  51. Solman SA, Menéndez CG (2003) Weather regimes in the South American sector and neighbouring oceans during winter. Clim Dyn 21:91–104CrossRefGoogle Scholar
  52. Spellman G (2017) An assessment of the Jenkinson and Collison synoptic classification to a continental mid-latitude location. Theor Appl Climatol 128:731–744CrossRefGoogle Scholar
  53. Stehlík J, Bárdossy A (2003) Statistical comparison of European circulation patterns and development of a continental scale classification. Theor Appl Climatol 76:31–46CrossRefGoogle Scholar
  54. Vangengeim GY (1935) Application of synoptic methods to the study and characterization of climate. Gidrometeoizdat, Moscow (in Russian) Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Meteorology and Climatology, Faculty of Sciences, School of GeologyAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Zrínyi Miklós Secondary SchoolBudapestHungary
  3. 3.Savaria University CentreEötvös Loránd UniversitySzombathelyHungary
  4. 4.Faculty of Agriculture, Institute of Economics and Rural DevelopmentUniversity of SzegedHódmezővásárhelyHungary

Personalised recommendations