Skip to main content
Log in

Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This paper focuses on the analysis of precipitation patterns, using a Local Area Weather Radar to collect information about the precipitation distribution in an Andean region of southern Ecuador (cities of Loja, Zamora and Catamayo). 54 representative events were selected to develop daily precipitation maps and to obtain their relevant characteristics, which were related to the topography and the season. The results showed that a strong correlation between the areas covered by precipitation (R A coefficient) and the season exists. In general, humid air masses come from the east (Amazon Basin), but during the main rainy season (December to April), humidity also frequently enters the study region from the west (Pacific Ocean). The rainy season is characterized by convective precipitation, associated with higher evaporation rates during austral summer. The relatively dry season is formed between May and November, but considerable precipitation amounts are registered, too, due to advective moisture transport from the Amazon Basin, a result of the predominant tropical easterlies carrying the humidity up the eastern escarpment of the Andes, generally following the natural course of the drainage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barry RG (2008) Mountain weather and climate, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bell MM et al (2015) The Hawaiian Educational Radar Opportunity (HERO). Bull Am Meteorol Soc 96:2167–2181. doi:10.1175/BAMS-D-14-00126.1

    Article  Google Scholar 

  • Bendix J, Rollenbeck R, Palacios WE (2004) Cloud detection in the tropics-a suitable tool for climate ecological studies in the high mountains of Ecuador. Int J Remote Sensing 25:4521–4540

    Article  Google Scholar 

  • Bendix J, Trachte K, Cermak J, Rollenbeck R, Naub T (2009) Formation of convective clouds at the foothills of the tropical eastern Andes (South Ecuador). JAMC 48(8):1682–1695

    Google Scholar 

  • Bendix J, Fries A, Zárate J, Trachte K, Rollenbeck R, Pucha-Cofrep F, Paladines R, Palacios I, Orellana J, Oñate-Valdivieso F, Naranjo C, Mendoza L, Mejia D, Guallpa M, Gordillo F, González-Jaramillo V, Dobbermann M, Celleri R, Carrillo C, Araque A, Achilles S (2017) RADARNET-SUR. Bull Am Meteorol Soc, FIRST RAIN RADAR NETWORK IN TROPICAL HIGH MOUNTAINS. doi:10.1175/BAMS-D-15-00178.1

    Google Scholar 

  • Davis Instruments (2015) Wireless Vantage Pro2™ and Vantage Pro2™ Plus Stations, USA. http://www.davisnet.com/product_documents/weather/spec_sheets/6152_62_53_63_SS.pdf. Accessed 13 Jan 2016

  • Delrieu G, Wijbrans A, Boudevillain B, Faure D, Bonnifait L, Kirstetter PE (2014) Geostatistical radar-raingauge merging: a novel method for the quantification of the rain estimation accuracy. Adv Water Resour 71(2014):110–124. doi:10.1016/j.advwatres.2014.06.005

    Article  Google Scholar 

  • Ecuavisa (2015) Loja: Ocho casa se inundaron y sus propietarios evacuados. http://www.ecuavisa.com/articulo/noticias/nacional/103763-loja-8-casas-se-inundaron-sus-propietarios-evacuados. Accessed 01 Jan 2017

  • El Comercio (2015) Lluvias en Loja dejan seis fallecidos y viviendas inundadas. http://www.elcomercio.com/actualidad/lluvias-loja-fallecidos-sierranevada-invierno.html. Accessed 01 Jan 2017

  • Emck P (2007) A climatology of South Ecuador. Dissertation, Friedrich-Alexander Universität Erlangen, Germany

  • Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475

    Article  Google Scholar 

  • Foresti L, Pozdnoukhov A (2012) Exploration of Alpine orographic precipitation patterns with radar image processing and clustering techniques. Meteorol Appl 19:407–419

    Article  Google Scholar 

  • Fries A, Rollenbeck R, Göttlicher D, Nauß T, Homeier J, Peters T, Bendix J (2009) Thermal structure of a megadiverse mountain ecosystem in southern Ecuador, and its regionalization. Erdkunde 63(4):321–335

    Article  Google Scholar 

  • Fries A, Rollenbeck R, Nauß T, Peters T, Bendix J (2012) Near surface air humidity in a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. Agric For Met 152:17–30

    Article  Google Scholar 

  • Fries A, Rollenbeck R, Bayer F, Gonzalez V, Oñate-Valivieso F, Peters T, Bendix J (2014) Catchment precipitation processes in the San Francisco valley in southern Ecuador: combined approach using high-resolution radar images and in situ observations. Meteorol Atmos Phys 126:13–29

    Article  Google Scholar 

  • Gabella M, Notarpietro R (2004) Improving operational measurement of precipitation using radar in mountainous terrain—Part I: methods. IEEE Geosci Remote Sens Lett 1(2):78–83

    Article  Google Scholar 

  • Germann U, Joss J (2004) Operational measurement of precipitation in mountainous terrain. In: Meischner P (ed) Weather radar: principles and advanced applications. Springer, Berlin, pp 52–77

    Chapter  Google Scholar 

  • Germann U, Galli G, Boscacci M, Bolliger M (2006) Radar precipitation measurement in a mountainous region. Q J R Meteorol Soc 132(618):1669–1692

    Article  Google Scholar 

  • Germann U, Berenguer M, Sempere-Torres D, Zappa M (2009) REAL—ensemble radar precipitation estimation for hydrology in a mountainous region. QJR Meteorol Soc 135:445–456

    Article  Google Scholar 

  • Houze RA Jr, James CN, Medina S (2001) Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. QJR Meteorol Soc 127:2537–2558

    Article  Google Scholar 

  • INAMHI (2009) Anuarios Meteorológicos. Quito, Ecuador. http://www.serviciometeorologico.gob.ec/biblioteca/. Accessed 01 Jan 2016

  • Jensen NE (2002) X-band local area weather radar—preliminary calibration results. Water Sci Technol 45:135–138

    Article  Google Scholar 

  • Jensen NE (2004) Local area weather radar documentation. DHI/LAWR/TN 2/10-2004. V 3.0, DHI Institute for the water environment

  • Jensen NE, Pedersen L (2005) Spatial variability of rainfall: Variations within a single radar pixel. Atmos Res 77:269–277

    Article  Google Scholar 

  • Johansson B, Chen D (2005) Estimation of areal precipitation for runoff modelling using wind data: a case study in Sweden. Clim Res 29:53–61

    Article  Google Scholar 

  • Krajewski WF, Kruger A, Smith JA, Lawrence R, Gunyon C, Goska R, Steiner M (2011) Towards better utilization of NEXRAD data in hydrology: an overview of Hydro-NEXRAD. J Hydroinform 13(2):255–266

    Article  Google Scholar 

  • Lengfeld K, Clemens M, Münster H, Ament F (2014) Performance of high-resolution X-band weather radar networks—the PATTERN example. Atmos Meas Tech 7:4151–4166

    Article  Google Scholar 

  • Ochoa-Cueva P, Fries A, Montesinos P, Rodríguez-Díaz JA, Boll J (2015) Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador. Land Degrad Dev 26:565–573

    Article  Google Scholar 

  • Ochoa-Cueva P, Fries A, Mejia D, Burneo J, Ruíz-Sinoga J, Cerdà A (2016) Climate, landforms and soil erosion processes in a semiarid basin of the Ecuadorian Andes. CATENA 140:31–42

    Article  Google Scholar 

  • Panziera L, Germann U (2010) The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. QJR Meteorol Soc 136:222–238

    Article  Google Scholar 

  • Pedersen L, Jensen NE, Madsen H (2010) Calibration of local area weather radar—identifying significant factors affecting the calibration. Atmos Res 97(1–2):129–143

    Article  Google Scholar 

  • Richter M (2003) Using plant functional types and soil temperatures for eco-climatic interpretation in southern Ecuador. Erdkunde 57:161–181

    Article  Google Scholar 

  • Rollenbeck R, Bendix J (2006) Experimental calibration of a cost-effective X-band weather radar for climate ecological studies in southern Ecuador. Atmos Res 79(3–4):296–316

    Article  Google Scholar 

  • Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99(2):277–289

    Article  Google Scholar 

  • Villarini G, Krajewski WF (2010) Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv Geophys 31(1):107–129

    Article  Google Scholar 

  • Vuille M, Raymond S, Keimig B, Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105:12447–12460

    Article  Google Scholar 

  • Windhorst D, Waltz T, Timbe E, Frede HG, Breuer L (2013) Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol Earth Syst Sci 17:409–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Oñate-Valdivieso.

Additional information

Responsible Editor: C. Simmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oñate-Valdivieso, F., Fries, A., Mendoza, K. et al. Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Meteorol Atmos Phys 130, 473–484 (2018). https://doi.org/10.1007/s00703-017-0535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-017-0535-8

Navigation