Skip to main content
Log in

Stratosphere/troposphere joint variability in southern South America as estimated from a principal components analysis

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

To understand how the tropopause annual evolution relates to the troposphere and lower stratosphere over southern South America, the study analyzes the joint behavior of single and double thermal tropopauses with the 500 and 100 hPa levels in the region. Radiosonde data spanning the period 1973–2014 were used. Geopotential height time series that were filtered known cycles were used as input for an unrotated S-mode principal components analysis. The first three leading modes of variability were analyzed. The first one has a strong semi-annual behavior, linked to wind cycles, with maximum activity in the center of the study region on the lee of the Andes. It appears to be linked to the vertical propagation of planetary and gravity waves. Semi-annual and terannual cycles dominate the second mode, the associated spatial patterns having strong resemblance with the occurrence of cold fronts. The annual time series for the third mode are coupled to a blocking index over the South Atlantic, and the associated spatial structures are also similar to blocking patterns. Results are in good agreement with observations, showing that the use of thermal tropopauses is a valid tool for studying different phenomena taking place in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Añel JA, Antuña JC, de la Torre L, Castanheira JM, Gimeno L (2008) Climatological features of global multiple tropopause events. J Geophys Res 113:D00B08. doi:10.1029/2007JD009697

    Article  Google Scholar 

  • Añel JA, de la Torre L, Gimeno L (2012) On the origin of the air between multiple tropopauses at midlatitudes. Sci World J. doi:10.1100/2012/191028

    Google Scholar 

  • Appenzeller C, Davies HC (1992) Structure of stratospheric intrusions into the troposphere. Nature 358:570–572

    Article  Google Scholar 

  • Austin JF (1980) The blocking of middle latitude westerly winds by planetary waves. Quart J Roy Met Soc 106:327–350

    Article  Google Scholar 

  • Baldwin MP, Holton JR (1988) Climatology of the stratospheric polar vortex and planetary wave breaking. J Atmos Sci 45(7):1123–1142

    Article  Google Scholar 

  • Bischoff SA, Canziani PO, Yuchechen AE (2007) The tropopause at southern extratropical latitudes: Argentine operational rawinsonde climatology. Int J Climatol 27:189–207. doi:10.1002/joc.1385

    Article  Google Scholar 

  • Bluestein HB (1993) Fronts and jets. Synoptic-dynamic meteorology in midlatitudes. Volume II: Observations and theory of weather systems. Oxford, New York, pp 238–425

    Google Scholar 

  • Bush ABG, Peltier WR (1994) Tropopause folds and synoptic-scale baroclinic wave life cycle. J Atmos Sci 51(12):1581–1604

    Article  Google Scholar 

  • Campetella CM, Possia NE (2007) Upper-level cut-off lows in southern South America. Meteorol Atmos Phys 96:181–191. doi:10.1007/s00703-006-0227-2

    Article  Google Scholar 

  • Canziani PO, Legnani WE (2003) Tropospheric-stratospheric coupling: extratropical synoptic systems in the lower stratosphere. Q J Roy Meteor Soc 129:2315–2329

    Article  Google Scholar 

  • Canziani PO, Compagnucci RH, Bischoff SA, Legnani WE (2002) A study of impacts of tropospheric synoptic processes on the genesis and evolution of extreme total ozone anomalies over southern South America. J Geophys Res D 24:4741. doi:10.1029/2001JD000965

    Article  Google Scholar 

  • Carlson TN (1998) Mid-latitude weather systems. American Meteorological Society, Boston

    Google Scholar 

  • Castanheira JM, Gimeno L (2011) Association of double tropopause events with baroclinic waves. J Geophys Res 116:D19113. doi:10.1029/2011JD016163

    Article  Google Scholar 

  • Castanheira JM, Añel JA, Marques CAF, Antuña JC, Liberato MLR, de la Torre L, Gimeno L (2009) Increase of upper troposphere/lower stratosphere wave baroclinicity during the second half of the 20th century. Atmos Chem Phys 9:9143–9153. doi:10.5194/acp-9-9143-2009

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109

    Article  Google Scholar 

  • Chen X, Añel JA, Su Z, de la Torre L, Kelder H, van Peet J, Ma Y (2013) The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau. PLoS ONE. doi:10.1371/journal.pone.0056909

    Google Scholar 

  • Compagnucci RH, Salles MA (1997) Surface pressure patterns during the year over southern South America. Int J Climatol 17:635–653

    Article  Google Scholar 

  • Compagnucci RH, Salles MA, Canziani PO (2001) The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view. Part I: data, methodology, and temporal behaviour. Int J Climatol 21:419–437. doi:10.1002/joc.606

    Article  Google Scholar 

  • Danielsen EF, Mohnen VA (1977) Project dustorm report: ozone transport, in situ measurements, and meterological analyses of tropopause folding. J Geophys Res 82(37):5867–5877

    Article  Google Scholar 

  • Davies HC, Schär CH, Wernli H (1991) The palette of fronts and cyclones within a baroclinic wave development. J Atmos Sci 48:1666–1689

    Article  Google Scholar 

  • Egger J (1998) Mountain torque and rossby wave radiation. J Atmos Sci 55:2937–2945

    Article  Google Scholar 

  • Fuenzalida HA, Sánchez R, Garreaud RD (2005) A climatology of cutoff lows in the Southern Hemisphere. J Geophys Res 110:D18101. doi:10.1029/2005JD005934

    Article  Google Scholar 

  • Goering MA, Gallus WA Jr, Olsen MA, Stanford JL (2001) Role of stratospheric air in a severe weather event: analysis of potential vorticity and total ozone. J Geophys Res 106(D11):11813–11823

    Article  Google Scholar 

  • Golub GH, Van Loan CF (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Grassi B, Redaell G, Canziani PO, Visconti G (2012) Effects of the PDO phase on the tropical belt width. J Climate 25:3282–3290. doi:10.1175/JCLI-D-11-00244.1

    Article  Google Scholar 

  • Griffiths MA, Thorpe AJ, Browining KA (2000) Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion. Quart J Roy Meteor Soc 126:125–144

    Article  Google Scholar 

  • Hartmann DL, Ghan SJ (1980) A statistical study of the dynamics of blocking. Mon Weather Rev 108:1144–1159

    Article  Google Scholar 

  • Hirschberg PA, Fritsch JM (1991a) Tropopause undulations and the development of extratropical cyclones. Part I: overview and observations from a cyclone event. Mon Weather Rev 119:496–517

    Article  Google Scholar 

  • Hirschberg PA, Fritsch JM (1991b) Tropopause undulations and the development of extratropical cyclones. Part II: diagnostic analysis and conceptual model. Mon Weather Rev 119:518–550

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on southern hemisphere storm tracks. J Climate 18:4108–4129

    Article  Google Scholar 

  • Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J Roy Meteor Soc 111:877–946

    Article  Google Scholar 

  • Inatsu M, Hoskins B (2004) The zonal asymmetry of the southern hemisphere winter storm track. J. Climate 17:4882–4892

    Article  Google Scholar 

  • Kållberg P, Berrisford P, Hoskins B, Simmons A, Uppala S, Lamy-Thépaut S, Hine R (2005) ERA-40 Atlas, ERA-40 Project report series No. 19. European Centre for Medium Range Weather Forecasts, Shinfield, Reading

    Google Scholar 

  • Kalnay-Rivas E, Merkine L-O (1981) A simple mechanism for blocking. J Atmos Sci 38:2077–2091

    Article  Google Scholar 

  • Koch P, Wernli H, Davies HC (2006) An event-based jet-stream climatology and typology. Int J Climatol 26:283–301. doi:10.1002/joc.1255

    Article  Google Scholar 

  • Kutzbach JE (1967) Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J Appl Meteorol 6:791–802

    Article  Google Scholar 

  • Langford AO, Proffitt MH, VanZandt TE, Lamarque JF (1996) Modulation of tropospheric ozone by a propagating gravity wave. J Geophys Res 101(D21):26605–26613

    Article  Google Scholar 

  • Lejenäs H (1984) Characteristics of Southern Hemisphere blocking as determined from a time series of observational data. Q J Roy Met Soc 110:967–979

    Article  Google Scholar 

  • Marengo J, Cornejo A, Satyamurty P, Nobre C, Sea W (1997) Cold surges in tropical and extratropical South America: the strong event in June 1994. Mon Weather Rev 125:2759–2786

    Article  Google Scholar 

  • Martius O, Schwierz C, Davies HC (2010) Tropopause-level waveguides. J Atmos Sci 67:866–879

    Article  Google Scholar 

  • Mastrantonio G, Einaudi F, Fua D, Lalas DP (1976) Generation of gravity waves by jet streams in the atmosphere. J Atmos Sci 33:1730–1738

    Article  Google Scholar 

  • McHall YL (1992) Nonlinear planetary wave instability and blocking. Adv Atmos Sci 9(2):173–190

    Article  Google Scholar 

  • McIntyre ME, Palmer TN (1983) Breaking planetary waves in the stratosphere. Nature 305:593–600

    Article  Google Scholar 

  • McIntyre ME, Palmer TN (1984) The ‘surf zone’ in the stratosphere. J Atmos Terr Phys 46(9):825–849

    Article  Google Scholar 

  • Mehta SK, Ratnam MV, Krishna Murthy BV (2011) Multiple tropopause in the tropics: a cold point approach. J Geophys Res 116:D20105. doi:10.1029/2011JD016637

    Article  Google Scholar 

  • Moore GWK, Peltier WR (1987) Cyclogenesis in frontal zones. J Atmos Sci 44(2):384–409

    Article  Google Scholar 

  • Morgan MC, Nielsen-Gammon JW (1998) Using tropopause maps to diagnose midlatitude weather systems. Mon Weather Rev 126:2555–2579

    Article  Google Scholar 

  • Nakamura N (2007) Extratropical stratosphere-troposphere mass exchange associated with isentropic mixing: a 1992–2005 climatology derived from advection-diffusion calculations. J Geophys Res 112:D24303. doi:10.1029/2006JD008382

    Article  Google Scholar 

  • Nappo CJ (2002) Terrain-generated gravity waves. An introduction to atmospheric gravity waves. Academic Press, San Diego, pp 47–84

    Google Scholar 

  • Nathan TR, Hodyss D (2010) Tropopshere-stratosphere communication through local vertical waveguides. Q J Roy Meteor Soc 136:12–19

    Article  Google Scholar 

  • Nielsen-Gammon JW (2001) A visualization of the global dynamic tropopause. B Am Meteorol Soc 82(6):1151–1167

    Article  Google Scholar 

  • Palmén E, Newton CW (1969) Atmospheric circulation systems. Academic Press, London

    Google Scholar 

  • Pan LL, Randel WJ, Gille JC, Hall WD, Nardi B, Massie S, Yudin V, Khosravi R, Konopka P, Tarasick D (2009) Tropospheric intrusions associated with the secondary tropopause. J Geophys Res 114:D10302. doi:10.1029/2008JD011374

    Article  Google Scholar 

  • Pavelin EJ, Whiteway A, Vaughan G (2001) Observation of gravity wave generation and breaking in the lowermost stratosphere. J Geophys Res 106(D6):5173–5179

    Article  Google Scholar 

  • Peevey TR, Gille JC, Randall CE, Kunz A (2012) Investigation of double tropopause spatial and temporal global variability utilizing High Resolution Dynamics Limb Sounder temperature observations. J Geophys Res 117:D01105. doi:10.1029/2011JD016443

    Article  Google Scholar 

  • Plougonven R, Snyder C (2007) Inertia–gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles. J Atmos Sci 64:2502–2520

    Article  Google Scholar 

  • Postel GA, Hitchman MH (1999) A Climatology of Rossby Wave Breaking along the Subtropical Tropopause. J Atmos Sci 56:359–373

    Article  Google Scholar 

  • Postel GA, Hitchman MH (2001) A case study of rossby wave breaking along the subtropical tropopause. Mon Weather Rev 129:2555–2569

    Article  Google Scholar 

  • Price JD, Vaughan G (1993) The potential for stratosphere-tropopshere exchange in cut-off low systems. Q J Roy Meteorol Soc 119:343–365

    Google Scholar 

  • Randel WJ, Seidel DJ, Pan LL (2007) Observational characteristics of double tropopause. J Geophys Res 112:D07309. doi:10.2019/2006JD007904

    Google Scholar 

  • Reed RJ (1955) A study of a characteristic type of upper-level frontogenesis. J Meteorol 12:226–237

    Article  Google Scholar 

  • Reiter ER (1975) Stratospheric-tropospheric exchange processes. Rev Geophys Space Phys 13(4):459–474

    Article  Google Scholar 

  • Richman MB, Gong X (1999) Relationships between the definition of the hyperplane width to the fidelity of principal component loading patterns. J Climate 12:1557–1576

    Article  Google Scholar 

  • Salles MA, Canziani PO, Compagnucci RH (2001) The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view. Part II: spatial behaviour. Int J Climatol 21:439–454. doi:10.1002/joc.607

    Article  Google Scholar 

  • Santer BD, Sausen R, Wigley TML, Boyle JS, AchutaRao K, Doutriaux C, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: decadal changes. J Geophys Res 108(D1):4002. doi:10.1029/2002JD002258

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101. doi:10.1029/2006JD007363

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi:10.1029/2007JD008861

    Article  Google Scholar 

  • Seluchi ME, Garreaud RD, Norte FA, Saulo AC (2006) Influence of the subtropical Andes on baroclinic disturbances: a cold front case study. Mon Weather Rev 134:3317–3335

    Article  Google Scholar 

  • Shapiro MA, Hampel T, Krueger AJ (1987) The Arctic tropopause fold. Mon Weather Rev 115:444–454

    Article  Google Scholar 

  • Škerlak B, Sprenger M, Wernli H (2014) A global climatology of stratosphere–troposphere exchange using the ERA-interim data set from 1979 to 2011. Atmos Chem Phys. doi:10.5194/acp-14-913-2014

    Google Scholar 

  • Smith RB, Woods BK, Jensen J, Cooper WA, Doyle JD, Jiang Q, Grubišič V (2008) Mountain waves entering the stratosphere. J Atmos Sci 65:2543–2562

    Article  Google Scholar 

  • Spaete PD, Johnson R, Schaack TK (1994) Stratospheric–tropospheric mass exchange during the presidents’ day storm. Mon Weather Rev 122:424–439

    Article  Google Scholar 

  • Staley DO, Gall RL (1977) On the wavelength of maximum baroclinic instability. J Atmos Sci 34(11):1679–1688

    Article  Google Scholar 

  • Steinbrecht W, Claude H, Köhler U, Hoinka KP (1998) Correlations between tropopause height and total ozone. J Geophys Res 103(D15):19183–19192

    Article  Google Scholar 

  • Stohl A, Bonasoni P, Cristofanelli P, Collins W, Feichter J, Frank A, Forster C, Gerasopoulos E, Gäggeler H, James P, Kentarchos T, Krompt-Kolb H, Krüger B, Land C, Meloen J, Papayannis A, Priller A, Seibert P, Sprenger M, Roelofs JG, Scheel HE, Schnabel C, Siegmund P, Tobler L, Trickl T, Wernli H, Wirth V, Zanis P, Zerefos C (2003) Stratosphere–troposphere exchange: a review, and what we have learned from STACCATO. J Geophys Res 108(D12):8516. doi:10.1029/2002JD002490

    Article  Google Scholar 

  • Tuck AF, Browell EV, Danielsen EF, Holton JR, Hoskins BJ, Johnson, Kley D, Krueger AJ, Megie G, Newell RE, Vaughan G (1985) World Meteorological Organization, 1986: Strat-trop exchange. Atmospheric ozone 1985. Global ozone research and monitoring report, Report 16. World Meteorological Organization, Geneva, pp 151–240

    Google Scholar 

  • Uccellini LW, Keyser D, Brill KF, Walsh CH (1985) The President’s Day Cyclone of 18–19 February 1979: influence of trough amplification and associated tropopause folding on rapid cyclogenesis. Mon Weather Rev 113:962–988

    Article  Google Scholar 

  • Vallis GK (2006) Planetary waves and the stratosphere. Atmospheric and ocean fluid dynamics. Cambridge University Press, Boca Raton, pp 541–580

    Chapter  Google Scholar 

  • Wallis TWR (1998) A subset of core stations from the comprehensive aerological reference dataset (CARDS). J Climate 11:272–282

    Article  Google Scholar 

  • Wandishin MS, Nielsen-Gammon JW, Keyser D (2000) A potential vorticity diagnostic approach to upper-level frontogenesis within a developing baroclinic wave. J Atmos Sci 57:3918–3938

    Article  Google Scholar 

  • Wang S, Polvani L (2011) Double tropopause formation in idealized baroclinic life cycles: the key role of an initial tropopause inversion layer. J Geophys Res 116:D05108. doi:10.1029/2010JD015118

    Google Scholar 

  • Wilks DS (2006) Empirical distributions and exploratory data analysis. In: Dmowska R, Hartmann D, Rossby HT (eds) International geophysics series, statistical methods in the atmospheric sciences, 2nd edn. Academic Press, London, pp 23–70

    Google Scholar 

  • WMO (1957) Meteorology: a three-dimensional science: second session of the commission for aerology. WMO Bull IV 4:134–138

    Google Scholar 

  • WMO (1992) International meteorological vocabulary, WMO—No 182, 2nd edn. Secretariat of the World Meteorological Organization, Geneva

    Google Scholar 

  • Yuchechen AE (2009) La tropopausa térmica en el sur de Sudamérica: climatología, variabilidad, y relaciones con la troposfera media y la baja estratósfera (The termal tropopause in southern South America: climatology, variability, and relationships with the middle troposphere and the lower stratosphere). Ph.D. dissertation, Universidad de Buenos Aires

  • Yuchechen AE, Bischoff SA, Canziani PO (2010) Latitudinal height couplings between single tropopause and 500 and 100 hPa within the Southern Hemisphere. Int J Climatol 30:492–508. doi:10.1002/joc.1914

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank to an anonymous reviewer for their helpful comments. This research was funded by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) PICT 2007 1888, PICT 2012 2927 and CONICET PIP 2012/4 0075 grants. In loving memory of Susana Bischoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián E. Yuchechen.

Additional information

Responsible Editor: L. Gimeno.

S. A. Bischoff: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuchechen, A.E., Canziani, P.O. & Bischoff, S.A. Stratosphere/troposphere joint variability in southern South America as estimated from a principal components analysis. Meteorol Atmos Phys 129, 247–271 (2017). https://doi.org/10.1007/s00703-016-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0454-0

Keywords

Navigation