Meteorology and Atmospheric Physics

, Volume 128, Issue 1, pp 73–95 | Cite as

Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain

  • E. BucchignaniEmail author
  • L. Cattaneo
  • H.-J. Panitz
  • P. Mercogliano
Original Paper


The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.


Root Mean Square Error Aerosol Optical Depth Climate Research Unit Mean Absolute Error Global Precipitation Climatology Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Andreas Will (TU Cottbus) for all the suggestions provided and Mansour Almazroui (King Abdulaziz University) for the valuable information provided. Simon Krichak (University of Tel Aviv) is also acknowledged for the useful discussions. UDEL Air Temperature and Precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder (Colorado, USA) from their Web site at All figures presented in this paper were obtained with CLIME, a special purpose GIS software integrated in ESRI ArcGIS Desktop 10.X, developed at CMCC (ISC Division) in order to evaluate multiple climate features easily and study climate changes over specific geographical domains with their related effects on the environment, including impacts on soil.

Supplementary material

703_2015_403_MOESM1_ESM.pdf (4.6 mb)
Supplementary material. The following supporting information is available as part of the online article:Fig. S1 The CORDEX-MENA domain (27 W–76E, 7S–45 N) with surface height (m) and the eleven evaluation regions defined in Almazroui (2015). Fig. S2 (a-b) Taylor diagrams of 2-meter temperature (1980–1984) for the eleven subdomains. The CRU dataset is used as a reference field. Fig. S3 (a-b) Monthly time series of 2-meter temperature (°C) (1980–1984) for the eleven subdomains. Fig. S4 (a-b) Taylor diagrams of total precipitation (1980–1984) for the eleven subdomains. The CRU dataset is used as a reference field. Fig. S5 (a-b) Monthly time series of total precipitation (mm/month) (1980–1984) for the eleven subdomains. Fig. S6 (a-b) Monthly time series of total cloud cover (%) (1980–1984) for the eleven subdomains. Fig. S7 (a-b) Monthly time series of mean sea level pressure (hPa) (1980–1984) for the eleven subdomains Supplementary material 1 (PDF 4726 kb)


  1. Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Elkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Almazroui M (2013) Simulation of present and future climate of Saudi Arabia using a regional climate model (PRECIS). Int J Climatol 33:2247–2259. doi: 10.1002/joc.3721 CrossRefGoogle Scholar
  3. Almazroui M (2015) RegCM4 in climate simulation over CORDEX-MENA/Arab domain: selection of suitable domain, convection and land-surface schemes. Int J Climatol. doi: 10.1002/joc.4340 Google Scholar
  4. Almazroui M, Nazrul Islam M, Al-Khalaf AK, Saeed F (2015) Best convective parameterization scheme within RegCM4 to downscale CMIP5 multi-model data for the CORDEX-MENA/Arab domain. Theor Appl Climatol. doi: 10.1007/s00704-015-1463-5 Google Scholar
  5. Avgoustoglou A (2011) Various implementations of a cloud scheme in cosmo model. COSMO Newsletter 11.
  6. Bachner S, Kapala A, Simmer C (2008) Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol Z 17(4):407–419CrossRefGoogle Scholar
  7. Bellprat O (2013) Parameter uncertainty and calibration of regional climate models. PhD Thesis, ETH ZurichGoogle Scholar
  8. Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Objective calibration of regional climate models. J Geophys Res 117(D23). doi: 10.1029/2012JD018262
  9. Beven K (2002) Towards a coherent philosophy for modelling the environment. Proc R Soc Lond A 458:2465–2484. doi: 10.1098/rspa.2002.0986 CrossRefGoogle Scholar
  10. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Change 2:433–436. doi: 10.1038/ntclimate1454 CrossRefGoogle Scholar
  11. Boko M, Niang I, Nyong A, Vogel C, Githeko A, Medany M, Osman-Elasha B, Tabo R, Yanda P (2007) Africa. Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 433–467Google Scholar
  12. Charney J, Quirk WJ, Chow S, Kornfield J (1977) A comparative study of the effect of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385CrossRefGoogle Scholar
  13. Christensen H, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi: 10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  14. Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102(432):405–418. doi: 10.1002/qj.49710243210 Google Scholar
  15. Davies HC (1983) Limitations of some common lateral boundary schemes used in regional NWP models. Mon Weather Rev 111:1002–1012. doi: 10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2 CrossRefGoogle Scholar
  16. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  17. Dosio A, Panitz HJ, Schubert-Frisius M, Luethi D (2015) Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim Dyn 44:2637–2661. doi: 10.1007/s00382-014-2262-x CrossRefGoogle Scholar
  18. Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konare´ A, Moufouma-Okia W, Rowell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model intercomparison study. Clim Dyn 35:175–192. doi: 10.1007/s00382-009-0676-7 CrossRefGoogle Scholar
  19. Endris HS, Omondi P, Jain S, Lennard C, Hewitson B, Chang L, Awange JL, Dosio A, Ketiem P, Nikulin G, Panitz HJ, Büchner M, Stordal F, Tazalikal L (2013) Assessment of the performance of CORDEX regional climate models in simulating east African rainfall. J Clim 26(21):8453–8475. doi: 10.1175/JCLI-D-12-00708.1 CrossRefGoogle Scholar
  20. Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Dosio A, Dhiédiou A, Kamga A, Browne Klutse NA, Hewitson B, Nikulin G, Lamptey B (2014) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int J Climatol 34(7):2241–2257. doi: 10.1002/joc.3834 CrossRefGoogle Scholar
  21. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin 58(3):175–183Google Scholar
  22. Grasselt R, Schuettemeyer D, Warrach-Sagi K, Ament F, Simmer C (2008) Validation of TERRA-ML with discharge measurements. Meteorol Z 17:763–773. doi: 10.1127/0941-2948/2008/0334 CrossRefGoogle Scholar
  23. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS310 dataset. Int J Climatol 34(3):623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  24. IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden J, Hanson CE (eds) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 976Google Scholar
  25. IPCC (2013) Climate change 2013: the physical science basis. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  26. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129CrossRefGoogle Scholar
  27. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model I: Assessment of control climate including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121(526):1413–1449. doi: 10.1002/qj.49712152610 Google Scholar
  28. Kalognomou EA, Lennard C, Shongwe M, Pinto I, Favre A, Kent M, Hewitson B, Dosio A, Nikulin G, Panitz HJ, Büchner M (2013) A diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J Clim 26(23):9477–9506. doi: 10.1175/JCLI-D-12-00703.1 CrossRefGoogle Scholar
  29. Kaspar F, Cubasch U (2008) Simulation of East African precipitation patterns with the regional climate model CLM. Meteorol Z 17(4):511–517CrossRefGoogle Scholar
  30. Kothe S (2011) The radiation budget in a regional climate model. PhD Thesis, Goethe University of FrankfurtGoogle Scholar
  31. Kothe S, Panitz HJ, Ahrens B (2014a) Analysis of the radiation budget in COSMO-CLM regional simulations for Africa. Meteorol Z. doi: 10.1127/0941-2948/2014/0527 Google Scholar
  32. Kothe S, Luthi D, Arhens B (2014b) Analysis of the West African Monsoon system in the regional climate model COSMO-CLM. Int J Climatol 34(481):493. doi: 10.1002/joc.3702 Google Scholar
  33. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112(2):189–215CrossRefGoogle Scholar
  34. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  35. Krähenmann S, Kothe S, Panitz H-J, Ahrens B (2013) Evaluation of daily maximum and minimum 2 m temperatures as simulated with the regional climate model COSMO-CLM over Africa. Meteorol Zeitschrift 22(3):297–316. doi: 10.1127/0941-2948/2013/0468 CrossRefGoogle Scholar
  36. Laprise R, Hernandez-Diaz L, Tete K, Sushama L, Separovic L, Martynov A, Winger K, Valin M (2013) Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim Dyn 41:3219–3246CrossRefGoogle Scholar
  37. Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33:313–330. doi: 10.1007/s00382-009-0553-4 CrossRefGoogle Scholar
  38. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res 112(G1):G01023. doi: 10.1029/2006JG000168 Google Scholar
  39. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10(2):111–127. doi: 10.1002/joc.3370100202 CrossRefGoogle Scholar
  40. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grid. Int J Climatol 25:693–712CrossRefGoogle Scholar
  41. Murphy AH (1988) Skill scores based on the mean square error and their relationship to the correlation coefficient. Mon Weather Rev 116:2417–2424CrossRefGoogle Scholar
  42. Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. doi: 10.1175/JCLI-D-11-00375.1 CrossRefGoogle Scholar
  43. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, Validation, and confirmation of numerical models in the earth sciences. Science 263:641–646CrossRefGoogle Scholar
  44. Panitz HJ, Berg P, Schadler G, Fosser G (2012) Modelling near future regional climate change for Germany and Africa, in High Performance Computing in Science and Engineering ‘11: Transactions of the High Performance Computing Center Stuttgart (HLRS). Nagel WE, Kröner DB, Resch M (eds). Springer, pp 503–511. doi: 10.1007/978-3-642-23869-7
  45. Panitz HJ, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Clim Dyn 42(11–12):3015–3038. doi: 10.1007/s00382-013-1834-5 CrossRefGoogle Scholar
  46. Pfeifroth U, Hollmann R, Ahrens B (2012) Cloud Cover Diurnal Cycles in Satellite Data and Regional Climate Model Simulations. Meteorol Z 21(6):551–560CrossRefGoogle Scholar
  47. Randall DA, Wielicki BA (1997) Measurements, models, and hypotheses in the atmospheric sciences. Bull Amer Meteor Soc 78(3):399–406CrossRefGoogle Scholar
  48. Rienecker M, Suarex MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert S, Takacs L, Kim G, Bloom S, Chen J, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson F, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s Modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  49. Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17(4):487–498. doi: 10.1127/0941-2948/2008/0297 CrossRefGoogle Scholar
  50. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348. doi: 10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  51. Rosenfeld D, Mintz Y (1988) Evaporation of rain falling from convective clouds as derived from radar measurements. J Appl Meteorol 27:209–215CrossRefGoogle Scholar
  52. Roudi-Fahimi F, Kent MM (2007) Challenges and opportunities—the population of the Middle East and North Africa. Popul Bull 62(2):1–21Google Scholar
  53. Ruti PM et al (2011) The West African climate system: a review of the AMMA model inter-comparison initiatives. Atmos Sci Let 12:116–122. doi: 10.1002/asl.305 CrossRefGoogle Scholar
  54. Salzmann N, Kotlarski S, von Waldow H, Rajczak J (2013) Advancing and facilitating the use of RCM data in climate impacts research. Impacts World 2013: International Conference on Climate Change Effects (Conference Proceedings), pp 565–572. doi:  10.2312/pik.2013.001
  55. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi: 10.1007/s00704-013-0860-x CrossRefGoogle Scholar
  56. Seth A, Giorgi F (1998) The Effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712CrossRefGoogle Scholar
  57. Simon T, Wang D, Hense A, Simmer C, Ohlwein C (2013) Generation and transfer of internal variability in a regional climate model. Tellus A 65:22485Google Scholar
  58. Smagorinsky J (1960) On the dynamical prediction of large-scale condensation by numerical methods. Am Geophys Union. doi: 10.1029/GM005p0071 Google Scholar
  59. Sommeria G, Deardorff JW (1977) Subgrid-scale condensation in models of nonprecipitating clouds. J Atmos Sci 34(2):344–355. doi: 10.1175/1520-0469(1977)0340344:SSCIMO2.0.CO;2 CrossRefGoogle Scholar
  60. Stanelle T, Vogel B, Vogel H, Baumer D, Kottmeier C (2010) Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys 10:10771–10788. doi: 10.5194/acp-10-10771-2010 CrossRefGoogle Scholar
  61. Steiner AL, Pal JS, Sa Rauscher, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi: 10.1007/s00382-009-0543-6 CrossRefGoogle Scholar
  62. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath A, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Met Atmos Phys 82:75–96. doi: 10.1007/s00703-001-0592-9 CrossRefGoogle Scholar
  63. Suklitsch M, Gobiet A, Leuprecht A, Frei C (2008) High resolution sensitivity studies with the regional climate model CCLM in the Alpine region. Meteorol Zeithschrift 17(4):467–476. doi: 10.1127/0941-2948/2008/0308 CrossRefGoogle Scholar
  64. Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35:231–247. doi: 10.1007/s00382-009-0613-9 CrossRefGoogle Scholar
  65. Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol 33(7):1805–1817. doi: 10.1002/joc.3551 CrossRefGoogle Scholar
  66. Tanrè D, Geleyn JF, Slingo JM (1984) First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In: Gerber H, Deepak A (eds) Aerosols and their climatic effects. Deepak Publ, Hampton, pp 133–177Google Scholar
  67. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  68. Tegen I, Lacis AA (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101(D14):19237–19244. doi: 10.1029/95JD03610 CrossRefGoogle Scholar
  69. Tegen I, Lacis AA, Fung I (1996) The influence of mineral aerosols from disturbed soils on the global radiation budget. Nature 380:419–422. doi: 10.1038/380419a0 CrossRefGoogle Scholar
  70. Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int J Climatol 33:3055–3072. doi: 10.1002/joc.3650 CrossRefGoogle Scholar
  71. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  72. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, UK, p 160Google Scholar
  73. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82CrossRefGoogle Scholar
  74. Willmott CJ, Matsuura K, Robeson SM (2009) Ambiguities inherent in sums-of-squares-based error statistics. Atmos Environ 43:749–752CrossRefGoogle Scholar
  75. Wu W, Lynch AH, Rivers A (2005) Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions. J Clim 18(7):917–933CrossRefGoogle Scholar
  76. Zittis G, Hadjinicolaou P, Lelieveld J (2014) WRF sensitivity to physics parameterizations over the MENA-CORDEX domain. In: Bärring L, Reckermann M, Rockel B, Rummukainen M (eds) Proc. 3rd Int. Workshop Lund Regional-Scale Climate Modelling Workshop, Lund, Sweden 16-19 June 2014, pp 308–309Google Scholar
  77. Zubler EM, Lohmann U, Lüthi D, Schär C (2011) Intercomparison of aerosol climatologies for use in a regional climate model over Europe. Geophys Res Lett 38(15):L15705. doi: 10.1029/2011GL048081 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • E. Bucchignani
    • 1
    • 2
    Email author
  • L. Cattaneo
    • 1
  • H.-J. Panitz
    • 3
  • P. Mercogliano
    • 1
    • 2
  1. 1.Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)Capua (CE)Italy
  2. 2.Centro Italiano Ricerche Aerospaziali (CIRA)Capua (CE)Italy
  3. 3.Institut für Meteorologie und KlimaforschungKarlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations