Skip to main content
Log in

The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The present study deals with the aerosol optical properties which are assessed during the period 2007 to 2009 over Mohal (31.9ºN, 77.12ºE) in the northwestern Indian Himalaya, using ground-based measurements and multi-satellite data. The daily average value of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient are 0.24 ± 0.08, 1.02 ± 0.34 and 0.13 ± 0.05, respectively. The comparative study of satellite and ground-based measurements reveals that the percentage retrieval for daily AOD at 550 nm over Mohal within the expected accuracy (Δτ  = ±0.05 ± 0.15τ ) is around 87%, with a significant correlation coefficient of 0.76. The present study suggests that the retrieval of AOD through satellite data is able to characterise the distribution of AOD over Mohal. However, further efforts are needed in order to eliminate systematic errors in the existing Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm. The transport of desert dust and anthropogenic aerosol during high aerosol loading days caused a significant reduction in surface-reaching solar radiation by 149 and 117%, respectively. This large reduction in surface-reaching solar radiation increased the atmospheric heating rate by 0.93 and 0.72 K day−1, respectively. This study indicates significant climatic implications due to the transport of aerosols in the northwestern Indian Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aloysius M, Mohan M, Parameswaran K, George SK, Nair PR (2008) Aerosol transport over the Gangetic basin during ISRO-GBP land campaign-II. Ann Geophys 26:431–440

    Article  Google Scholar 

  • Ångström A (1961) Techniques of determining the turbidity of the atmosphere. Tellus 13:214–223

    Article  Google Scholar 

  • Babu SS, Moorthy KK, Satheesh SK (2007) Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station—Part 2: direct short wave radiative forcing. Ann Geophys 25:2309–2320

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Kaskaoutis DG, Kambezidis HD (2007) Case study of a dust storm over Hyderabad area, India: its impact on solar radiation using satellite data and ground measurements. Sci Tot Environ 384:316–332

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Prasad VK, Sharma AR, Reddi EUB, Kambezidis HD, Kaskaoutis DG (2008) Influence of natural and anthropogenic activities on UV Index variations—a study over tropical urban region using ground based observations and satellite data. J Atmos Chem 59:219–236

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Sharma AR (2009) Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains—a study using LIDAR, ground measurements and satellite data. J Atmos Sol Terr Phys 71:112–120

    Article  Google Scholar 

  • Beegum SN, Moorthy KK, Nair VS, Babu SS, Satheesh SK, Vinoj V, Reddy RR, Gopal KR, Badarinath KVS, Niranjan K, Pandey SK, Behera M, Jeyaram A, Bhuyan PK, Gogoi MM, Singh S, Pant P, Dumka UC, Kant Y, Kuniyal JC, Singh D (2008) Characteristics of spectral aerosol optical depths over India during ICARB. J Earth Syst Sci 117(S1):303–313

    Article  Google Scholar 

  • Bellouin N, Boucher O, Haywood J, Reddy MS (2005) Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 438:1138–1141

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: the challenge in investigating links. Atmos Res 94:338–344

    Article  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hoffman DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    Article  Google Scholar 

  • Chu DA, Kaufman YJ, Remer LA, Holben BN (1998) Remote sensing of smoke from MODIS airborne simulator during the SCAR-B experiment. J Geophys Res 103:31979–31987

    Article  Google Scholar 

  • Chu DA, Kaufman YJ, Ichoku C, Remer LA, Tanré D, Holben BN (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29:8007. doi:10.1029/2001GL013205

    Article  Google Scholar 

  • Deschamps P-Y, Bréon F-M, Leroy M, Podaire A, Bricaud A, Buriez J-C, Sèze G (1994) The POLDER mission: instrument characteristics and scientific objectives. IEEE Trans Geosci Remote Sen 32:598–615

    Article  Google Scholar 

  • Dey S, Tripathi SN, Singh RP, Holben BN (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res 109:D20211. doi:10.1029/2004JD004924

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2010) HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model. Access via NOAA ARL READY Website, NOAA Air Resources Laboratory, Silver Spring, MD, USA. http://ready.arl.noaa.gov/HYSPLIT.php

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neil NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:31333–31349

    Article  Google Scholar 

  • Fu Q, Liou KN (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J Atmos Sci 49:2139–2156

    Article  Google Scholar 

  • Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50:2008–2025

    Article  Google Scholar 

  • Ganesh KE, Umesh TK, Narasimhamurthy B (2005) On the relationship between the Ångström’s turbidity parameters. IASTA Bull 17:527–528

    Google Scholar 

  • Gautam R, Hsu NC, Lau K-M, Kafatos M (2009) Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann Geophys 27:3691–3703

    Article  Google Scholar 

  • Gogoi MM, Bhuyan PK, Moorthy KK (2008) Estimation of the effect of long-range transport on seasonal variation of aerosols over northeastern India. Ann Geophys 26:1365–1377

    Article  Google Scholar 

  • Gogoi MM, Bhuyan PK, Moorthy KK (2009) An investigation of aerosol size distribution properties at Dibrugarh: North-Eastern India. Terr Atmos Ocean Sci 20(3):521–533

    Article  Google Scholar 

  • Hoppel WA, Fitzgerald JW, Frick GM, Larson RE, Mack EJ (1990) Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. J Geophys Res 95:3659–3686

    Article  Google Scholar 

  • Huang J, Minnis P, Yi Y, Tang Q, Wang X, Hu Y, Liu Z, Ayers K, Trepte C, Winker D (2007) Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys Res Lett 34:L18805. doi:10.1029/2007GL029938

    Article  Google Scholar 

  • Huang J, Minnis P, Chen B, Huang Z, Liu Z, Zhao Q, Yi Y, Ayers JK (2008) Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J Geophys Res 113:D23212. doi:10.1029/2008JD010620

    Article  Google Scholar 

  • Huang J, Fu Q, Su J, Tang Q, Minnis P, Hu Y, Yi Y, Zhao Q (2009) Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos Chem Phys 9:4011–4021

    Article  Google Scholar 

  • Ichoku C, Remer LA, Kaufman YJ, Levy R, Chu DA, Tanré D, Holben BN (2003) MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000. J Geophys Res 108:8499. doi:10.1029/2002JD002366

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007—the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, New York

    Google Scholar 

  • Jacovides CP, Kaltsounides NA, Asimakopoulos DN, Kaskaoutis DG (2005) Spectral aerosol optical depth and Ångström parameters in the polluted Athens atmosphere. Theor Appl Climatol 81:161–167

    Article  Google Scholar 

  • Jayaraman A, Ratnam MV, Patra AK, Rao TN, Sridharan S, Rajeevan M, Gadhavi H, Kesarkar AP, Srinivasulu P, Raghunath K (2010) Study of Atmospheric Forcing and Responses (SAFAR) campaign: overview. Ann Geophys 28:89–101

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: dependence of the Ångström exponent on wavelength over four AERONET sites. Atmos Chem Phys Discuss 7:7347–7397

    Article  Google Scholar 

  • Kaskaoutis DG, Badarinath KVS, Kharol SK, Sharma AR, Kambezidis HD (2009) Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J Geophys Res 114:D22204. doi:10.1029/2009JD012423

    Article  Google Scholar 

  • Kaskaoutis DG, Kosmopoulos PG, Kambezidis HD, Nastos PT (2010) Identification of the aerosol types over Athens, Greece: the influence of air-mass transport. Adv Meteorol, article ID 168346. doi:10.1155/2010/168346

  • Kaufman YJ, Hobbs PV, Kirchhoff VWJH, Artaxo P, Reme, LA, Holben BN, King MD, Ward DE, Prins EM, Longo KM, Mattos LF, Nobre CA, Spinhirne JD, Ji Q, Thompson AM, Gleason JF, Christopher SA, Tsay SC (1998) Smoke, Clouds, and Radiation—Brazil (SCAR-B) experiment. J Geophys Res 103(D24):31783–31808

    Article  Google Scholar 

  • Kaufman YJ, Gobron N, Pinty B, Widlowski J-L, Verstraete MM (2002) Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm—theory. Geophys Res Lett 29(23):2116. doi:10.1029/2001GL014492

    Article  Google Scholar 

  • Kedia S, Ramachandran S (2008) Latitudinal and longitudinal variation in aerosol characteristics from Sun photometer and MODIS over the Bay of Bengal and Arabian Sea during ICARB. J Earth Syst Sci 117:375–387

    Article  Google Scholar 

  • Kedia S, Ramachandran S (2009) Variability in aerosol optical and physical characteristics over the Bay of Bengal and the Arabian Sea deduced from Ångström exponents. J Geophys Res 114:D14207. doi:10.1029/2009JD011950

    Article  Google Scholar 

  • Kedia S, Ramachandran S, Kumar A, Sarin MM (2010) Spatiotemporal gradients in aerosol radiative forcing and heating rate over Bay of Bengal and Arabian Sea derived on the basis of optical, physical, and chemical properties. J Geophys Res 115:D07205. doi:10.1029/2009JD013136

    Article  Google Scholar 

  • King MD, Kaufman YJ, Tanré D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc 80:2229–2259

    Article  Google Scholar 

  • Kuniyal JC, Rao PSP, Momin GA, Safai PD, Tiwari S, Ali K (2007) Trace gases behaviour in sensitive areas of the northwestern Himalaya—a case study of Kullu-Manali tourist complex, India. Indian J Radio Space Phys 36:197–203

    Google Scholar 

  • Kuniyal JC, Thakur A, Thakur HK, Sharma S, Pant P, Rawat PS, Moorthy KK (2009) Aerosol optical depths at Mohal-Kullu in the northwestern Indian Himalayan high altitude station during ICARB. J Earth Syst Sci 118(1):41–48

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864

    Article  Google Scholar 

  • Levy RC, Remer LA, Dubovik O (2007) Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J Geophys Res 112:D13210. doi:10.1029/2006JD007815

    Article  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation. Elsevier, New York

    Google Scholar 

  • Liu Z, Liu D, Huang J, Vaughan M, Uno I, Sugimoto N, Kittaka C, Trepte C, Wang Z, Hostetler C, Winker D (2008) Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos Chem Phys 8:5045–5060

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    Article  Google Scholar 

  • Middleton NJ (1986) A geography of dust storms in southwest Asia. Int J Climatol 6:183–196

    Article  Google Scholar 

  • Misra A, Jayaraman A, Ganguly D (2008) Validation of MODIS derived aerosol optical depth over Western India. J Geophys Res 113:D04203. doi:10.1029/2007JD009075

    Article  Google Scholar 

  • Misra A, Jayaraman A, Ganguly DA (2010) A comparative study of MODIS derived aerosol optical depth from two consecutive versions. IASTA Bull 19:212

    Google Scholar 

  • Moorthy KK, Nair PR, Murthy BVK (1991) Size distribution of coastal aerosols: effects of local sources and sinks. J Appl Meteorol 30:844–852

    Article  Google Scholar 

  • Moorthy KK, Nair PR, Murthy BVK, Satheesh SK (1996) Time evolution of the optical effects and aerosol characteristics of Mt. Pinatubo origin from ground-based observations. J Atmos Terr Phys 58(10):1101–1116

    Article  Google Scholar 

  • Moorthy KK, Satheesh SK, Murthy BVK (1998) Characteristics of spectral optical depths and size distributions of aerosols over tropical oceanic regions. J Atmos Sol Terr Phys 60(10):981–992

    Article  Google Scholar 

  • Moorthy KK, Niranjan K, Narasimhamurthy B, Agashe VV, Murthy BVK (1999) Aerosol climatology over India. ISRO-GBP MWR network and data base. Scientific report, SR-03–99. Indian Space Research Organisation (ISRO), Bangalore

    Google Scholar 

  • Morales C (1986) The airborne transport of Saharan dust: a review. Clim Change 9:219–241

    Article  Google Scholar 

  • Myhre G, Govaerts Y, Haywood JM, Berntsen TK, Lattanzio A (2005) Radiative effect of surface albedo change from biomass burning. Geophys Res Lett 32:L20812. doi:10.1029/2005GL022897

    Article  Google Scholar 

  • Narasimhamurthy B, Raju NV, Tukarama M, Prasad BSN, Moorthy KK (1998) Studies of the temporal and spectral features of atmospheric aerosols over Mysore (12.3.-N), Global Change Studies, ISRO-GBP: GSC-02-98:77–92

  • Parameswaran K, Nair PR, Rajan R, Ramana MV (1999) Aerosol loading in coastal and marine environments in the Indian Ocean region during winter season. Curr Sci 76(7):947–955

    Google Scholar 

  • Pathak B, Bhuyan PK, Gogoi MM, Kalita G, Bhuyan K (2010) Validation of satellite derived AOD by ground based observation over Dibrugarh. IASTA Bull 19:219–222

    Google Scholar 

  • Powell KA, Hostetler CA, Vaughan MA, Kuehn RE, Hunt WH, Lee K-P, Trepte CR, Rogers RR, Young SA, Winker DM (2009) CALIPSO Lidar calibration algorithms. Part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel. J Atmos Oceanic Technol 26(10):2015–2033

    Article  Google Scholar 

  • Prasad AK, Singh S, Chauhan SS, Srivastava MK, Singh RP, Singh R (2007) Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmos Environ 41:6289–6301

    Article  Google Scholar 

  • Prasad AK, Yang K-HS, El-Askary HM, Kafatos M (2009) Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008). Ann Geophys 27:4505–4519

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. doi:10.1029/2000RG000095

    Article  Google Scholar 

  • Raju NV, Prasad BSN, Narasimhamurthy B (2003) Atmospheric aerosols and air pollution. Indian J Radio Space Phys 32:306–311

    Google Scholar 

  • Ramachandran S, Rengarajan R, Jayaraman A, Sarin MM, Das SK (2006) Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. J Geophys Res 111:D20214. doi:10.1029/2006JD007142

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Holben B, Priestley K, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andreae MO, Cantrell W (2001) Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28371–28398

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333

    Article  Google Scholar 

  • Ranjan RR, Joshi HP, Iyer KN (2007) Spectral variation of total column aerosol optical depth over Rajkot: a tropical semi-arid Indian station. Aerosol Air Qual Res 7(1):33–45

    Google Scholar 

  • Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins J, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu H-C, Gu W, Sienkiewicz M, Koster RK, Gelaro R, Stajner I, Nielsen JE (2008) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0, NASA Technical Report Series on Global Modeling and Assimilation, NASA/T-2008–104606, Vol. 27. NASA Goddard Space Flight Center: Greenbelt, MA, USA.

  • Russell PB, Livingston JM, Dutton EG, Pueschel V, Reagon JA, Defoor TE, Box MA, Allen D, Pilewskie P, Herman BM, Kinnie SA, Hofmann DJ (1993) Pinatubo and pre-pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to Lidar data. J Geophys Res 98:22969–22985

    Article  Google Scholar 

  • Sagar R, Kumar B, Dumca UC, Moorthy KK, Pant P (2004) Characteristics of aerosol spectral optical depths over Manora Peak: a high-altitude station in the central Himalaya. J Geophys Res 109:D06207. doi:10.1029/2003JD003954

    Article  Google Scholar 

  • Saha A, Moorthy KK, Niranjan K (2005) Interannual variations of aerosol optical depth over coastal India: relation to synoptic meteorology. J Appl Meteor 44:1066–1077

    Article  Google Scholar 

  • Satheesh SK, Ramanathan V (2000) Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405:60–63

    Article  Google Scholar 

  • Satheesh SK, Moorthy KK, Das I (2001) Aerosol spectral optical depths over the Bay of Bengal, Arabian Sea and Indian Ocean. Curr Sci 81(12):1617–1625

    Google Scholar 

  • Satheesh SK, Ramanathan V, Holben BN, Moorthy KK, Loeb NG, Maring H, Prospero JM, Savoie D (2002) Chemical, microphysical, and radiative effects of Indian Ocean aerosols. J Geophys Res 107(D23):4725. doi:10.1029/2002JD002463

    Article  Google Scholar 

  • Schuster GL, Dubovik O, Holben BN (2006) Ångström exponent and bimodal aerosol size distributions. J Geophys Res 111:D07207. doi:10.1029/2005JD006328

    Article  Google Scholar 

  • Sharma NL, Kuniyal JC, Singh M, Negi AK, Singh K, Sharma P (2009) Number concentration characteristics of ultrafine aerosols (atmospheric nanoparticles/aitken nuclei) during 2008 over western Himalayan region, Kullu-Manali, India. Indian J Radio Space Phys 38:326–337

    Google Scholar 

  • Sharma AR, Kharol SK, Badarinath KVS, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys 28:367–379

    Article  Google Scholar 

  • Shaw GE, Reagan JA, Herman BM (1973) Investigations of atmospheric extinction using direct solar radiation measurements made with a multiple wavelength radiometer. J Appl Meteorol 12:374–380

    Article  Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966

    Article  Google Scholar 

  • Tripathi SN, Dey S, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101

    Article  Google Scholar 

  • Vinoj V, Satheesh SK, Moorthy KK (2008) Aerosol characteristics at a remote island: Minicoy in southern Arabian Sea. J Earth Syst Sci 117:389–397

    Article  Google Scholar 

  • Yu H, Dickinson RE, Chin M, Kaufman YJ, Zhou L, Tian Y, Dubovik O, Holben BN (2004) Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations. J Geophys Res 109:D03206. doi:10.1029/2003JD003914

    Article  Google Scholar 

  • Zhao TX-P, Stowe LL, Smirnov A, Crosby D, Sapper J, McClain CR (2002) Development of a global validation package for satellite oceanic aerosol optical thickness retrieval based on AERONET observations and its application to NOAA/NESDIS operational aerosol retrievals. J Atmos Sci 59:294–312

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, Uttarakhand, for providing the necessary facilities. The authors are grateful to the Indian Space Research Organization (ISRO), Bangalore, for providing financial assistance to this project through the Space Physics Laboratory, Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram, Kerala. We acknowledge National Aeronautics and Space Administration (NASA) for providing the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol data and the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory for a provision of the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) transport and dispersion model which we have used in this publication. We thank the reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Chandra Kuniyal.

Additional information

Responsible editor: R. Roebeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guleria, R.P., Kuniyal, J.C., Rawat, P.S. et al. The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing. Meteorol Atmos Phys 113, 153–169 (2011). https://doi.org/10.1007/s00703-011-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-011-0149-5

Keywords

Navigation