Skip to main content

Advertisement

Log in

Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September–October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1–1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman AS, Toon OB, Hobbs PV (1993) Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science 262:226–229

    Article  Google Scholar 

  • Albrecht B (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Almeida FC, Munroe GW, Morales CAR, Pereira MC, Barros FA, Sampaio AJC, Oliveira JCP (1992) An instrumented aircraft for tropical precipitation physics research: description and opportunity. WMP Report 19:145–150

    Google Scholar 

  • Andreae MO, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 89:13–41

    Article  Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342

    Article  Google Scholar 

  • Cifelli R, Petersen WA, Carey LD, Rutledge SA, Silva Dias MAF (2002) Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J Geophys Res 107:44.1–44.16

    Article  Google Scholar 

  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176

    Article  Google Scholar 

  • Cohard J-M, Pinty J-P, Bedos C (1998) Extending Twomey’s analytical estimate of nucleated cloud droplet concentration from CCN spectra. J Atmos Sci 55:3348–3357

    Article  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Article  Google Scholar 

  • Decesari S, Fuzzi S, Facchini C, Mircea M, Emblico L, Cavalli F, Maenhaut W, Chi X, Schkolnik G, Falkovich A, Rudich Y, Claeys M, Pashynska V, Vas G, Kourtchev I, Vermeylen R, Hoffer A, Andreae MO, Tagliavini E, Moretti F, Artaxo P (2006) Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos Chem Phys 6:375–402

    Google Scholar 

  • Feichter J, Roeckner E, Lohmann U, Liepert B (2004) Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J Clim 17:2384–2398

    Article  Google Scholar 

  • Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30:20.1–20.4

    Google Scholar 

  • Gandu AW, Silva Dias PL (1998) Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence. J Geophys Res 103D6:6001–6015

    Article  Google Scholar 

  • Ghan SJ, Leung LR, Easter RC, Abdul-Hazzak H (1997) Prediction of cloud droplet number in a general circulation model. J Geophys Res 102:21777–21794

    Article  Google Scholar 

  • Gonçalves FLT, Martins JA, Silva Dias MAF (2008) Shape parameter analysis using cloud spectra and gamma functions in the numerical modeling RAMS during LBA Project at Amazonian region, Brazil. Atmos Res 89:1–11

    Article  Google Scholar 

  • Hansen JE, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Hobbs PV, Radke LF (1969) Cloud condensation nuclei from a simulated forest fire. Science 163:279–280

    Article  Google Scholar 

  • Hudson JG (1980) Relationship between fog condensation nuclei and fog microstructure. J Atmos Sci 37:1854–1867

    Article  Google Scholar 

  • Hudson JG (1983) Effects of CCN on stratus clouds. J Atmos Sci 40:480–486

    Article  Google Scholar 

  • Hudson JG (1993) Cloud condensation nuclei. J Appl Meteor 32:596–607

    Article  Google Scholar 

  • Hudson JG, Mishra S (2007) Relationships between CCN and cloud microphysics variations in clean maritime air. Geophys Res Lett 34:L16804. doi:10.1029/2007GL030044

    Article  Google Scholar 

  • Hudson JG, Yum SS (2001) Maritime–continental drizzle contrasts in small cumuli. J Atmos Sci 58:915–926

    Article  Google Scholar 

  • Hudson JG, Yum SS (2002) Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J Geophys Res 107(D19):8022. doi:10.1029/2001JD000829

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: scientific basis. Fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge

  • Jiusto JE (1967) Aerosol and cloud microphysics measurements in Hawaii. Tellus 19:359–368

    Google Scholar 

  • Johnson BT, Shine KP, Forster PM (2004) The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc 130:1407–1422

    Article  Google Scholar 

  • Kocmond W (1965) Investigation of warm fog properties and fog modification concepts. Annual report, GAL report no. RM-1788-P-9, RM-1788-P-10

  • Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik U, Aalto P, Keronen P, Hakola H, Back J, Hoffmann T, Vesala T, Hari P (2003) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys Discuss 3:6093–6107

    Google Scholar 

  • Lohmann U, Feichter J (2004) Global indirect aerosol effects: a review. Atmos Chem Phys Discuss 4:7561–7614

    Google Scholar 

  • Martins JA, Silva Dias MAF (2009) The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region. Environ Res Lett 4:015002. doi:10.1088/1748-9326/4/1/015002

    Article  Google Scholar 

  • Martins JA, Silva Dias MAF, Gonçalves FLT (2009) Impact of biomass burning aerosols on precipitation in the Amazon: a modeling case study. J Geophys Res 114:D02207. doi:10.1029/2007JD009587

    Article  Google Scholar 

  • Oliveira JCP, Vali G (1995) Calibration of a photoelectric cloud condensation nucleus counter. Atmos Res 38:237–248

    Article  Google Scholar 

  • Prins EM, Feltz JM, Menzel WP, Ward DE (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res 103(D24):31821–31836

    Article  Google Scholar 

  • Raga GB, Jonas PR (1995) Vertical distribution of aerosol particles and CCN in clear air around the British Isles. Atmos Environ 29:673–684

    Article  Google Scholar 

  • Rissler J, Vestin A, Swietlicki E, Fisch G, Zhou J, Artaxo P, Andreae MO (2006) Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos Chem Phys 6:471–491

    Article  Google Scholar 

  • Roberts GC, Andreae MO, Zhou J, Artaxo P (2001) Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophys Res Lett 28:2807–2810

    Article  Google Scholar 

  • Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108

    Article  Google Scholar 

  • Sherwood S (2002) A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science 295:1272–1275

    Article  Google Scholar 

  • Silva Dias MAF, Rutledge S, Kabat P, Silva Dias PL, Nobre C, Fisch G, Dolman AJ, Zipser E, Garstang M, Manzi AO, Fuentes JD, Rocha HR, Marengo J, Plana-Fattori A, Sá LDA, Alvalá RCS, Andreae MO, Artaxo P, Gielow R, Gatti L (2002) Clouds and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J Geophys Res 107(D20):39.1–39.20

    Google Scholar 

  • Sotiropoulou R-EP, Medina J, Nenes A (2006) CCN predictions: is theory sufficient for assessments of the indirect effect? Geophys Res Lett 33:L05816. doi:10.1029/2005GL025148

    Article  Google Scholar 

  • Twomey S (1959) The nuclei of natural cloud formation—part II: the supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis Pura e Appl 43:243–249

    Article  Google Scholar 

  • Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Twomey S, Wojciechowski TA (1969) Observations of the geographical variation of cloud nuclei. J Atmos Sci 26:684–688

    Article  Google Scholar 

  • VanReken TM, Rissman TA, Roberts GC, Varutbangkul V, Jonsson HH, Flagan RC, Seinfeld JH (2003) Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. J Geophys Res 108(D20):4633. doi:10.1029/2003JD003582

    Article  Google Scholar 

  • Yum SS, Hudson JG (2002) Maritime/continental microphysical contrasts in stratus. Tellus B 54:61–73

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alberto Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, J.A., Gonçalves, F.L.T., Morales, C.A. et al. Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season. Meteorol Atmos Phys 104, 83–93 (2009). https://doi.org/10.1007/s00703-009-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-009-0019-6

Keywords

Navigation