Meteorology and Atmospheric Physics

, Volume 101, Issue 3–4, pp 191–210 | Cite as

Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data



Cb-TRAM is a new fully automated tracking and nowcasting algorithm. Intense convective cells are detected, tracked and discriminated with respect to onset, rapid development, and mature phase. The detection is based on Meteosat-8 SEVIRI (Spinning Enhanced Visible and Infra-Red Imager) data from the broad band high resolution visible, infra-red 6.2 µm (water vapour), and the infra-red 10.8 µm channels. In addition, tropopause temperature data from ECMWF operational model analyses is utilised as an adaptive detection criterion. The tracking is based on geographical overlap between current detections and first guess patterns of cells predicted from preceeding time steps. The first guess patterns as well as short range forecast extrapolations are obtained with the aid of a new image matching algorithm providing complete fields of approximate differential cloud motion. Based on these motion vector fields interpolation and extrapolation of satellite data are obtained which allow to generate synthetic intermediate data fields between two known fields as well as nowcasts of motion and development of detected areas. Examples of the application of Cb-TRAM and a comparison to precipitation radar and lightning data as independent data sources demonstrate the capabilities of the new technique.


Radar Cell Pattern Lightning Activity Precipitation Radar Pyramid Level 
These keywords were added by machine and not by the authors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaud, Y, Desbois, M, Maizi, J 1992Automatic tracking and characterization of African convective systems on METEOSAT picturesJ Appl Meteorol31443453CrossRefGoogle Scholar
  2. Baker, MB, Christian, HJ, Latham, J 1995A computational study of the relationship linking lightning frequency and other thundercloud parametersQ J Roy Meteorol Soc12115251548CrossRefGoogle Scholar
  3. Bolliger, M, Binder, P, Rossa, A 2003Tracking cloud patterns by METEOSAT rapid scan imagery in complex terrainMeteorol Z127380CrossRefGoogle Scholar
  4. Bugliaro L, Mayer B (2004) Study on quantitative use of the high resolution visible channel onboard the METEOSTAT second generation satellite, Final Report phase II. ITT No. 03/542 EUMETSAT Study EUMETSAT, Am Kavalleriesand 31, 64295 Darmstadt, GermanyGoogle Scholar
  5. Carvalho, L, Jones, C 2001A satellite method to identify structural properties of mesoscale convective systems based on the maximum spatial correlation tracking technique (MASCOTTE)J Appl Meteorol4016831701CrossRefGoogle Scholar
  6. Dixon, M, Wiener, G 1993TITAN: Thunderstorm identification, tracking, analysis, and nowcasting – a radar-based methodologyJ Atmos Ocean Tech10785797CrossRefGoogle Scholar
  7. Ebert, EE, McBride, JL 2000Verification of precipitation in weather systems: Determination of systematic errorsJ Hydrol239179202CrossRefGoogle Scholar
  8. ECMWF (2005) MARS User Guide European Center for Medium Range Weather Forecast – ECMWF, Reading, United Kingdom; Manual available at
  9. Evans, JE 1997Safely reducing delays due to adverse terminal weatherBianco, LDell’Olmo, POdoni, AR eds. Modelling and Simulation in Air Traffic ManagementSpringerNew York185202Google Scholar
  10. Feidas, H, Cartarlis, C 2005Application of an automated cloud-tracking algorithm on satellite imagery for tracking and monitoring small mesoscale convective cloud systemsInt J Remote Sens2616771698CrossRefGoogle Scholar
  11. Fujita, T 1969Present status of cloud velocity computations from ATS-1 and ATS-3 satellitesCOSPAR Space Research IXNorth-HollandAmsterdam557570Google Scholar
  12. Handwerker, J 2002Cell tracking with TRACE3D – a new algorithmAtmos Res611534CrossRefGoogle Scholar
  13. Hering AM, Morel C, Galli G, Senesi S, Ambrosetti P, Boscacci M (2004) Nowcasting thunderstorms in the Alpine Region using a radar based adaptive thresholding scheme. In: Proc. ERAD Conference 2004, Visby, Sweden, pp. 206–11Google Scholar
  14. Horn, BKP, Schunck, BG 1981Determining optical flowArtificial Intelligence17185203CrossRefGoogle Scholar
  15. Lang P (2001) Cell tracking and warning indicators derived from operational radar products. In: Proc. 30th Int. Conference on Radar Meteorology, Munich, Germany, Amer Met Soc, pp. 245–7Google Scholar
  16. Ligda MG (1953) The horizontal motion of small precipitation areas as observed by radar, Tech. Rep. 21. Available from Library, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, Department of Meteorology, M.I.T.Google Scholar
  17. Lucas BD, and Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proc. Imaging Understanding Workshop, pp. 121–30. Available from
  18. Machado, LAT, Rossow, WB, Guedes, RL, Walker, AW 1998Life cycle variations of mesoscale convective systems over the AmericasMon Wea Rev12616301654CrossRefGoogle Scholar
  19. Mannstein, H, Meyer, R, Wendling, P 1999Operational detection of contrails from NOAA-AVHRR dataInt J Remote Sens2016411660CrossRefGoogle Scholar
  20. Mecklenburg, S, Joss, J, Schmid, W 2000Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithmJ Hydrol2394668CrossRefGoogle Scholar
  21. Menzel, WP 2001Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the presentB Am Meteorol Soc823347CrossRefGoogle Scholar
  22. Morel, C, Senesi, S 2002A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: MethodologyQ J Roy Meteorol Soc12819531971CrossRefGoogle Scholar
  23. Mueller, C, Saxen, T, Roberts, R, Wilson, J, Betancourt, T, Dettling, S, Oien, N, Yee, J 2003NCAR Auto-Nowcast SystemWea Forecast18545561CrossRefGoogle Scholar
  24. Pierce, CE, Hardaker, PJ, Collier, CG, Haggett, CM 2000GANDOLF: a system for generating automated nowcasts of convective precipitationMeteorol Appl7341360CrossRefGoogle Scholar
  25. Purdom, JFW 1976Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behaviorMon Wea Rev10414741483CrossRefGoogle Scholar
  26. Riosalido R, Carretero O, Elizaga F, Martin F (1998) An experimental tool for mesoscale convective systems tracking. In: Proc. 1st Joint NWC SAF Training Workshop, MadridGoogle Scholar
  27. Schmetz, J, Holmlund, K, Hoffman, J, Strauss, B, Mason, B, Gaertner, V, Koch, A, Van De Berg, L 1993Operational cloud-motion winds from Meteosat infrared imagesJ Appl Meteorol3212061225CrossRefGoogle Scholar
  28. Senesi S, Ducrocq V, Thepenier RM, Calas C (1998) MSG and the nowcasting of convective systems: relevance of instability indices and other convection-related diagnostics. In: Proc. 1st Joint NWC SAF Training Workshop, MadridGoogle Scholar
  29. Steinacker, R, Dorninger, M, Wölfelmaier, F, Krennert, T 2000Automatic tracking of convective cells and cell complexes from lightning and radar dataMeteorol Atmos Phys72101110CrossRefGoogle Scholar
  30. Takahashi, T 1978Riming electrification as a charge generation mechanism in thunderstormsJ Atmos Sci3515361548CrossRefGoogle Scholar
  31. Wilson, JW, Mueller, CK 1993Nowcasts of thunderstorm initiation and evolutionWea Forecast8113131CrossRefGoogle Scholar
  32. Wilson, JW, Crook, NA, Mueller, CK, Sun, J, Dixon, M 1998Nowcasting thunderstorms: A status reportB Am Meteorol Soc7920792099CrossRefGoogle Scholar
  33. World Meteorological Organisation1957Meteorology: a three-dimensional scienceWMO Bull6134138Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR)OberpfaffenhofenGermany

Personalised recommendations