Skip to main content
Log in

Evolution of the atmospheric boundary-layer structure of an arid Andes Valley

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley.

Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3–4 m s−1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night.

The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while latent heat flux convergence is of minor relevance to the moisture budget of the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • RG Barry (1992) Mountain weather and climate Routledge London 402

    Google Scholar 

  • Caughey SJ (1982) Observed characteristics of the atmospheric boundary layer. In: Nieuwstadt FTM, van Dop H (eds) Atmospheric turbulence and air pollution modelling. Reidel, Dordrecht, Holland, pp. 107–58

  • C Freytag (1985) ArticleTitleMERKUR-results: aspects of the temperature field and the energy budget in a large alpine valley during mountain and valley wind Contr Atmos Phys 58 458–476

    Google Scholar 

  • M Gamo (1996) ArticleTitleThickness of the dry convection and large-scale subsidence above deserts Bound Layer Meteorol 79 265–278 Occurrence Handle10.1007/BF00119441

    Article  Google Scholar 

  • JR Garratt (1994) The atmospheric boundary layer Cambridge University Press Cambridge 316

    Google Scholar 

  • J Grunwald N Kalthoff U Corsmeier F Fiedler (1996) ArticleTitleComparison of areally averaged turbulent fluxes over non-homogeneous terrain: results from the EFEDA-field experiment Bound Layer Meteorol 77 105–134 Occurrence Handle10.1007/BF00119574

    Article  Google Scholar 

  • B Hennemuth (1985) ArticleTitleTemperature field and energy budget of a small alpine valley Contr Atmos Phys 58 545–559

    Google Scholar 

  • B Hennemuth I Neureither (1986) ArticleTitleDas Feuchtefeld in einem alpinen Endtal Meteorol Rdsch 39 233–239

    Google Scholar 

  • TW Horst JC Doran (1986) ArticleTitleNocturnal drainage flow on simple slopes Bound Layer Meteorol 34 263–286 Occurrence Handle10.1007/BF00122382

    Article  Google Scholar 

  • N Kalthoff V Horlacher U Corsmeier A Volz-Thomas B Kolahgar H Geiß M Möllmann-Coers A Knaps (2000) ArticleTitleInfluence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area J Geophys Res 105 1585–1597 Occurrence Handle10.1029/1999JD900999

    Article  Google Scholar 

  • N Kalthoff I Bischoff-Gauß M Fiebig-Wittmaack F Fiedler J Thürauf E Novoa C Pizarro R Castillo L Gallardo R Rondanelli M Kohler (2002) ArticleTitleMesoscale wind regimes in Chile at 30° S J Appl Meteorol 41 953–970 Occurrence Handle10.1175/1520-0450(2002)041<0953:MWRICA>2.0.CO;2

    Article  Google Scholar 

  • N Kalthoff M Fiebig-Wittmaack C Meißner M Kohler M Uriarte I Bischoff-Gauß (2006) ArticleTitleThe energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes J Arid Environ 65 420–443 Occurrence Handle10.1016/j.jaridenv.2005.08.013

    Article  Google Scholar 

  • M Kossmann F Fiedler (2000) ArticleTitleDiurnal momentum budget analysis of thermally induced slope winds Meteorol Atmos Phys 75 195–215 Occurrence Handle10.1007/s007030070004

    Article  Google Scholar 

  • M Kossmann AP Sturman P Zawar-Reza HA McGowan AJ Oliphant IF Owens RA Spronken-Smith (2002) ArticleTitleAnalysis of the wind field and heat budget in an alpine lake basin during summertime fair weather conditions Meteorol Atmos Phys 81 27–52 Occurrence Handle10.1007/s007030200029

    Article  Google Scholar 

  • Kraus H (1970) Die Energieumsätze in der bodennahen Atmosphäre. Offenbach a. M., Berichte des Deutschen Wetterdienstes N 117, 43 pp

  • T Kuwagata J Kondo M Sumioka (1994) ArticleTitleThermal effect of the sea breeze on the structure of the boundary layer and the heat budget over land Bound Layer Meteorol 67 119–144 Occurrence Handle10.1007/BF00705510

    Article  Google Scholar 

  • B Mayer A Kylling (2005) ArticleTitleTechnical note: the libRadtran software package for radiative transfer calculations – description and examples of use Atmos Chem Phys 5 1855–1877 Occurrence Handle10.5194/acp-5-1855-2005

    Article  Google Scholar 

  • HA McGowan AP Sturman (2005) ArticleTitleAtmospheric boundary layer development over a narrow coastal plain during onshore flow Meteorol Z 14 3–14 Occurrence Handle10.1127/0941-2948/2005/0014-0003

    Article  Google Scholar 

  • A Miller (1976) The climate of Chile W Schwerdtfeger (Eds) Climates of Central and South America SeriesTitleWorld survey of climatology NumberInSeries12 Elsevier Scientific Publ. Amsterdam 113–145

    Google Scholar 

  • B Neininger (1982) ArticleTitleMesoklimatische Messungen im Oberwallis Ann Meteor N F 19 105–107

    Google Scholar 

  • S Olivares F Squeo (1999) ArticleTitlePatrones fenológicos en especies arbustivas del desierto costero del norte-centro de Chile Revista Chilena de Historia Natural 72 353–370

    Google Scholar 

  • J Rutllant P Ulriksen (1979) ArticleTitleBoundary-layer dynamics of the extremely arid northern part of Chile: the Antofagasta field experiment Bound Layer Meteorol 17 41–55 Occurrence Handle10.1007/BF00121936

    Article  Google Scholar 

  • RS Schemenauer P Cereceda N Carvjal (1987) ArticleTitleMeasurements of fog water deposition and their relationships to terrain features J Clim Appl Meteorol 26 1285–1291 Occurrence Handle10.1175/1520-0450(1987)026<1285:MOFWDA>2.0.CO;2

    Article  Google Scholar 

  • RS Schemenauer PH Fuenzalida P Cereda (1988) ArticleTitleA neglected water resource: the Camanchaca of South America Bull Amer Meteor Soc 69 138–147 Occurrence Handle10.1175/1520-0477(1988)069<0138:ANWRTC>2.0.CO;2

    Article  Google Scholar 

  • F Squeo R Osorio G Arancio (1994) Flora de Los Andes de Coquimbo: Cordillera de Doña Ana Ediciones Universidad de La Serena La Serena 168

    Google Scholar 

  • R Steinacker (1984) ArticleTitleArea-height distribution of a valley and its relation to the valley wind Contr Atmos Phys 57 64–71

    Google Scholar 

  • RB Stull (1988) Introduction to Boundary Layer Meteorology Kluwer Academic Press Dordrecht 666

    Google Scholar 

  • I Vergeiner E Dreiseitl (1987) ArticleTitleValley winds and slope winds – observations and elementary thoughts Meteorol Atmos Phys 36 264–286 Occurrence Handle10.1007/BF01045154

    Article  Google Scholar 

  • T Warner (2004) Desert meteorology Cambridge University Press Cambridge 595

    Google Scholar 

  • Weischet W (1996) Regionale Klimatologie, Teil 1. Die Neue Welt: Amerika, Neuseeland, Australien. Teubner, Stuttgart, 468 pp

  • Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen (ed) Atmospheric processes over complex terrain. Meteorological monographs 23. Amer Meteor Soc, Boston, pp. 5–42

  • CD Whiteman TB McKee JC Doran (1996) ArticleTitleBoundary layer evolution within a canyonland basin. Part I: Mass, heat, and moisture budgets from observations J Appl Meteorol 35 2145–2161 Occurrence Handle10.1175/1520-0450(1996)035<2145:BLEWAC>2.0.CO;2

    Article  Google Scholar 

  • CD Whiteman S Zhong X Bian JD Fast JC Doran (2000) ArticleTitleBoundary layer evolution and regional-scale diurnal circulations over the Mexico basin and Mexican plateau J Geophys Res 105 10081–10102 Occurrence Handle10.1029/2000JD900039

    Article  Google Scholar 

  • A Zangvil (1996) ArticleTitleSix years of dew observations in the Negev Desert, Israel J Arid Environ 32 361–371 Occurrence Handle10.1006/jare.1996.0030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kalthoff.

Additional information

Correspondence: Norbert Kalthoff, Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodayar, S., Kalthoff, N., Fiebig-Wittmaack, M. et al. Evolution of the atmospheric boundary-layer structure of an arid Andes Valley. Meteorol Atmos Phys 99, 181–198 (2008). https://doi.org/10.1007/s00703-007-0274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-007-0274-3

Keywords

Navigation