Meteorology and Atmospheric Physics

, Volume 97, Issue 1–4, pp 3–18 | Cite as

Reanalysis of western Pacific typhoons in 2004 with multi-satellite observations

  • X. Zhang
  • T. Li
  • F. Weng
  • C.-C. Wu
  • L. Xu
Article

Summary

A pilot tropical cyclone reanalysis project was conducted to construct a reliable, high temporal and spatial resolution tropical cyclone dataset for selected western Pacific typhoons in summer 2004, with the application of the latest satellite observations and a 4-dimensional variational data assimilation method. Primary data used for the reanalysis include SSM/I rain rate, GOES-retrieved upper-level wind, QuikSCAT surface wind, Aqua AIRS/AMSU retrieved temperature and moisture profiles, and JTWC best track data. A regular reanalysis procedure was established and up to 12 western Pacific typhoons have been reanalyzed. The reanalysis period covers the entire life cycle of a tropical cyclone, from a few days prior to its genesis to its final decay stage. A preliminary analysis shows that the reanalysis product significantly improves typhoon intensity, structure, and track, compared to the NCEP operational final analysis. The validation of the TC structure against independent observations shows that the reanalysis reproduces well the asymmetric characteristics of TC rain bands and cloud bands. A further modeling experiment with an initial condition from the reanalysis product reveals a significant improvement in typhoon intensity forecast compared to a parallel experiment with an initial condition from the NCEP final analysis, which provides a further indication of quality of the tropical cyclone reanalysis. The reanalysis product and the raw observational data will soon be posted on the data server of the IPRC Asia-Pacific Data-Research Center (http://apdrc.soest.hawaii.edu/) for public use.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, AF, Leslie, LM, Gagelberg, CR, Powers, PE 1993Tropical cyclone prediction using a barotropic model initialized by a generalized inverse methodMon Wea Rev12117141729CrossRefGoogle Scholar
  2. Bennett, AF, Chua, BS, Leslie, LM 1996Generalized inversion of a global numerical weather prediction modelMeteor Appl Phys60165178CrossRefGoogle Scholar
  3. Bourassa, MA, Legler, DM, O’Brien, JJ, Smith, SR 2003SeaWinds validation with research vesselsJ Geophys Res1083019DOI:10.1029/2001JC001028CrossRefGoogle Scholar
  4. Chen SS, Tenerelli JE, Zhao W, Foster RA, Liu WT (2004) Improving tropical cyclone prediction using scatterometer surface winds in model initialization. ENVSAT Symposium Abstract and Program Book, Salzburg, Austria, No. 669Google Scholar
  5. Chen Y, Snyder C (2006) Assimilating vortex position with an ensemble Kalman filter. Mon Wea Rev (in revision)Google Scholar
  6. Daley R, Barker E (2001) NAVDAS Source Book 2001. NRL Publication NRL/PU/7530-01-441, 163 ppGoogle Scholar
  7. DeMaria, M, Mainelli, M, Shay, LK, Knaff, JA, Kaplan, J 2005Further improvement to the statistical hurricane intensity prediction scheme (SHIPS)Wea Forecast20531543CrossRefGoogle Scholar
  8. Dudhia, J 1993A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold frontMon Wea Rev12114931513CrossRefGoogle Scholar
  9. Ebuchi, NH, Graber, HC, Caruso, MJ 2002Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy dataJ Atmos Oceanic Technol1920492062CrossRefGoogle Scholar
  10. Freilich, MH, Dunbar, RS 1999The accuracy of the NSCAT 1 vector winds: comparison with national data buoy center buoysJ Geophys Res10411,23111,246CrossRefGoogle Scholar
  11. Fujita, T 1952Pressure distribution within a typhoonGeophys Mag23437451Google Scholar
  12. Fujiyoshi, Y, Endoh, T, Yamada, T, Tsuboki, K, Tachibana, Y, Wakahana, G 1990Determination of a Z-R relationship for snowfall using a radar and high sensitivity snow gaugesJ Appl Meteor29147152CrossRefGoogle Scholar
  13. Gauthier, P, Thépaut, J-N 2001Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-FranceMon Wea Rev12920892102CrossRefGoogle Scholar
  14. Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp [Available from NCAR Publications Office, P.O. Box 3000, Boulder, CO 80307-3000]Google Scholar
  15. Hayden, CM, Purser, RJ 1995Recusive filter objective analysis of meteorological fields, applications to NESDIS operational processingJ Appl Meteor34315CrossRefGoogle Scholar
  16. Holland, GJ 1980An analytic model of the wind and pressure profiles in hurricanesMon Wea Rev10812121218CrossRefGoogle Scholar
  17. Hollinger JP (1991) DMSP Special Sensor Microwave/Imager calibration/validation. Final Report, Vol. II, Naval Research Laboratory, Washington, DC, 106 pp [Available from Hollinger JP, Naval Research Laboratory, Washington, DC 20375]Google Scholar
  18. Holmlund, K 1998The utilization of satellite properties of satellite-derived atmospheric motion vectors to derive quality indicatorsWea Forecast1310931104CrossRefGoogle Scholar
  19. Holmlund, K, Velden, CS, Rohn, M 2001Enhanced automated quality control applied to high-density satellite-derived windsMon Wea Rev129517529CrossRefGoogle Scholar
  20. Huang, XY, Lynch, P 1993Diabatic digital-filtering initialization: Application to the HIRLAM modelMon Wea Rev121589603CrossRefGoogle Scholar
  21. Isaksen, L, Stoffelen, A 2000ERS scatterometer wind data impact on ECMWF’s tropical cyclone forecastsIEEE Trans Geosci Remote Sens3818851892CrossRefGoogle Scholar
  22. Jorgenson, DP, Wills, PT 1982A Z-R relationship for hurricanesJ Appl Meteor21356366CrossRefGoogle Scholar
  23. Kain, JS, Fritsch, JM 1990A one-dimensional entraining/detraining plume model and its application in convective parameterizationJ Atmos Sci4727842802CrossRefGoogle Scholar
  24. Kain, JS, Fritsch, JM 1993Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical modelsMeteor Monogr24165170Google Scholar
  25. Karyampudi, VM, Lai, GS, Manobianco, J 1998Impact of initial conditions, rainfall assimilation, and cumulus parameterization on simulations of hurricane FlorenceMon Wea Rev12630773101CrossRefGoogle Scholar
  26. Kuo, HL 1974Further studies of the parameterizations of the influence of cumulus convection on large scale flowJ Atmos Sci3112321240CrossRefGoogle Scholar
  27. Le Marshall, JF, Smith, W, Gallan, G 1985Hurricane Debby – An illustration of the complementary nature of VAS soundings and cloud and water vapor motion windsBull Amer Meteor Soc66258263CrossRefGoogle Scholar
  28. Ledvina, DV, Pfaendtner, J 1995Inclusion of Special Sensor Microwave/Imager (SSM/I) total precipitable water estimates into the GEOS-1 data assimilation systemMon Wea Rev12330033015CrossRefGoogle Scholar
  29. Leidner, S, Isaksen, L, Hoffman, RN 2003Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR assimilation systemMon Wea Rev131326CrossRefGoogle Scholar
  30. Leslie, LM, Le Marshall, JF, Morison, RP, Spinoso, C, Purser, RJ, Pescod, N, Seecamp, R 1998Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind dataMon Wea Rev12612481257CrossRefGoogle Scholar
  31. Liu, DC, Nocedal, J 1989On the limited memory BFGS method for large scale optimizationMath Program45503528CrossRefGoogle Scholar
  32. Liu, WT 2002Progress in scatterometer applicationJ Oceanogr58121136CrossRefGoogle Scholar
  33. Liu, Y, Zhang, D-L, Yau, MK 1997A multiscale study of hurricane Andrew (1992). Part I: Explicit simulation and verificationMon Wea Rev12530733093CrossRefGoogle Scholar
  34. Lynch, P, Huang, XY 1992Initialization of the HIRLAM model using a digital filterMon Wea Rev12010191034CrossRefGoogle Scholar
  35. Mills GA, Gallan GM, Goodman BM (1986) A mesoscale data assimilation scheme for real time use in the McIDAS environment. CIMSS Tech. Report, 86 pp [Available from CIMSS, Space Science and Engineering Center, University of Wisconsin, 1225 West Dayton St., Madison, WI 53706]Google Scholar
  36. Nieman, SJ, Menzel, WP, Hayden, CM, Gray, D, Wanzong, S, Velden, CS, Daniels, J 1997Fully automated cloud drift winds in NESDIS operationsBull Amer Meteor Soc7811211134CrossRefGoogle Scholar
  37. Park, K, Zou, X 2004Toward developing an objective 4DVAR BDA scheme for hurricane initialization based on TPC observed parametersMon Wea Rev13220542069CrossRefGoogle Scholar
  38. Peng, MS, Chang, SW 1996Impacts of SSM/I-retrieved rainfall rates on numerical precipitation of a tropical cycloneMon Wea Rev12411811198CrossRefGoogle Scholar
  39. Peng, S-Q, Zou, X 2002Assimilation of NCEP multi-sensor hourly rainfall data using 4D-var approach: a case study of the squall line on April 5, 1999Meteorol Atmos Phys81237255CrossRefGoogle Scholar
  40. Pickett, MH, Tang, W, Rosenfeld, LK, Wash, CH 2003QuikSCAT satellite comparisons with near-shore buoy wind data off the US West CoastJ Atmos Oceanic Technol2018691879CrossRefGoogle Scholar
  41. Price, JC 1976The nature of multiple solutions for surface wind speed over the oceans from scatterometer measurementsRemote Sens Environ54754CrossRefGoogle Scholar
  42. Pu, Z-X, Braun, SA 2001Evaluation of Bogus vortex techniques with four-dimensional variational data assimilationMon Wea Rev12920232039CrossRefGoogle Scholar
  43. Pu, Z-X, Wei-Kuo, T, Scott, B, Joanne, S, Yiqin, J, Jeffrey, H, William, O, Arthur, H 2002The impact of TRMM data on mesoscale numerical simulation of supertyphoon PakaMon Wea Rev13024482458CrossRefGoogle Scholar
  44. Pu, Z-X, Wei-Kuo, Tao 2004Mesoscale assimilation of TMI rainfall data with 4DVAR: Sensitivity studiesJ Meteor Soc Japan8213891397CrossRefGoogle Scholar
  45. Reisner, J, Rasmussen, RM, Bruintjes, R 1998Explicit forecasting of supercooled liquid water in winter storms using the MM5 modelQuart J Roy Met Soc12410711107CrossRefGoogle Scholar
  46. Ruggiero FH, Michalakes J, Nehrkorn T, Modica GD, Zou X (2006) Development of a new distributed-memory MM5 adjoint. J Atmos Ocean Technol 23 (DOI: 10.1175/JTECH1862.1, 424–436)Google Scholar
  47. Shi, JJ, Chang, SW, Raman, S 1996Impact on assimilations of dropsonde data and SSM/I rain rates on numerical prediction of hurricane Florence (1988)Mon Wea Rev12414351448CrossRefGoogle Scholar
  48. Soden, B, Velden, CS, Tuleya, R 2001The impact of satellite winds on experimental GFDL hurricane model forecastsMon Wea Rev129835852CrossRefGoogle Scholar
  49. Troen, I, Mahrt, L 1986A simple model of the atmospheric boundary layer: sensitivity to surface evaporationBound Layer Meteorol37129148CrossRefGoogle Scholar
  50. Tsuyuki, T 1997Variational data assimilation in the Tropics using precipitation data. Part III: Assimilation of SSM/I precipitation ratesMon Wea Rev12514471464CrossRefGoogle Scholar
  51. Velden, C, Hayden, C, Menzel, W, Franklin, JL, Lynch, JS 1992The impact of satellite-derived winds on numerical hurricane track forecastsWea Forecast7107118CrossRefGoogle Scholar
  52. Velden, C, Hayden, C, Nieman, S, Menzel, W, Wanzong, S, Goerss, J 1997Upper-tropospheric winds derived from geostationary satellite water vapor observationsBull Amer Meteor Soc78173195CrossRefGoogle Scholar
  53. Velden, C, Olander, T, Wanzong, S 1998The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995: Part I: Dataset methodology, description, and case analysisMon Wea Rev12612021218CrossRefGoogle Scholar
  54. Wee, T-K, Kuo, Y-H 2004Impact of a digital filter as a weaker constraint in MM5 4DVAR: an observing system simulation experimentMon Wea Rev132543559CrossRefGoogle Scholar
  55. Weng F, Zhu T, Yan B (2006) Use of rain-affected radiances from microwave observations for hurricane vortex analysis. J Atmos Sci (submitted)Google Scholar
  56. Xiao, Q, Zou, X, Wang, B 2000aOn the initialization and prediction of a landfalling hurricane using a variational bogus data assimilation schemeMon Wea Rev12822522269CrossRefGoogle Scholar
  57. Xiao, Q, Zou, X, Kuo, Y-H 2000bIncorporating the SSM/I-derived precipitable water and rainfall rate into a numerical model: a case study for the ERICA IOP-4 cycloneMon Wea Rev12887108CrossRefGoogle Scholar
  58. Xiao, Q, Zou, X, Pondeca, M, Shapiro, MA, Velden, C 2002Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cycloneMon Wea Rev130507528CrossRefGoogle Scholar
  59. Zhang, D-L, Anthes, RA 1982A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 dataJ Appl Meteor2115941609CrossRefGoogle Scholar
  60. Zhang, X, Wang, B, Zhang, X 2003Four-dimensional variational assimilation using rainfall observation in heavy rain simulationProg Nat Sci1313291333Google Scholar
  61. Zhang X, Xiao Q, Fitzpatrick P (2006) The impact of multi-satellite data on the initialization and simulation of hurricane Lili’s (2002) Rapid weakening phase. Mon Wea Rev (accepted)Google Scholar
  62. Zhao, Y, Wang, B, Ji, Z, Liang, X, Deng, G, Zhang, X 2005Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved dataJ Geophys Res110D14101DOI: 10.1029/2004JD005267CrossRefGoogle Scholar
  63. Zou, X, Kuo, Y-H 1996Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale modelMon Wea Rev12428592882CrossRefGoogle Scholar
  64. Zou, X, Xiao, Q 2000Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation schemeJ Atmos Sci57836860CrossRefGoogle Scholar
  65. Zou, X, Navon, IM, Ledimet, FX 1992Incomplete observations and control of gravity waves in variational data assimilationTellus44A273296Google Scholar
  66. Zupanski, D, Mesinger, F 1995Four-dimensional variational assimilation of precipitation dataMon Wea Rev12311121127CrossRefGoogle Scholar
  67. Zupanski, M, Zupanski, D 2002Four-dimensional variational data assimilation for the blizzard of 2000Mon Wea Rev13019671988CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • X. Zhang
    • 1
  • T. Li
    • 1
  • F. Weng
    • 2
  • C.-C. Wu
    • 3
  • L. Xu
    • 4
  1. 1.International Pacific Research CenterUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Sensor Physics BranchNOAA/NESDIS/ORACamps SpringUSA
  3. 3.Department of Atmospheric SciencesNational Taiwan UniversityTaipeiTaiwan
  4. 4.Naval Research LaboratoryMontereyUSA

Personalised recommendations