Skip to main content

Advertisement

Log in

Combined use of gray matter volume and neuropsychological test performance for classification of individuals with bipolar I disorder via artificial neural network method

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Diagnosis of patients with bipolar disorder may be challenging and delayed in clinical practice. Neuropsychological impairments and brain abnormalities are commonly reported in bipolar disorder (BD); therefore, they can serve as potential biomarkers of the disorder. Rather than relying on these predictors separately, using both structural and neuropsychiatric indicators together could be more informative and increase the accuracy of the automatic disorder classification. Yet, to our information, no Artificial Intelligence (AI) study has used multimodal data using both neuropsychiatric tests and structural brain changes to classify BD. In this study, we first investigated differences in gray matter volumes between patients with bipolar I disorder (n = 37) and healthy controls (n = 27). The results of the verbal and non-verbal memory tests were then compared between the two groups. Finally, we used the artificial neural network (ANN) method to model all the aforementioned values for group classification. Our voxel-based morphometry results demonstrated differences in the left anterior parietal lobule and bilateral insula gray matter volumes, suggesting a reduction of these brain structures in BD. We also observed a decrease in both verbal and non-verbal memory scores of individuals with BD (p < 0.001). The ANN model of neuropsychiatric test scores combined with gray matter volumes has classified the bipolar group with 89.5% accuracy. Our results demonstrate that when bilateral insula volumes are used together with neuropsychological test results the patients with bipolar I disorder and controls could be differentiated with very high accuracy. The findings imply that multimodal data should be used in AI studies as it better represents the multi-componential nature of the condition, thus increasing its diagnosability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data analyzed in this research paper are not publicly available and can only be shared upon a reasonable request.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baris Metin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metin, B., Farhad, S., Erguzel, T. et al. Combined use of gray matter volume and neuropsychological test performance for classification of individuals with bipolar I disorder via artificial neural network method. J Neural Transm 130, 967–974 (2023). https://doi.org/10.1007/s00702-023-02649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-023-02649-y

Keywords

Navigation