Skip to main content
Log in

A kynurenine pathway enzyme aminocarboxymuconate-semialdehyde decarboxylase may be involved in treatment-resistant depression, and baseline inflammation status of patients predicts treatment response: a pilot study

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

A Correction to this article was published on 14 December 2022

This article has been updated

Abstract

The kynurenine pathway (KP) and inflammation are substantial in depression pathogenesis. Although there is a crosstalk between the KP, inflammation, and neurotrophic factors, few studies examine these topics together. Novel medications may be developed by clarifying dysregulations related to inflammation, KP, and neurotrophic factors in treatment-resistant depression (TRD). We aimed to evaluate the serum levels of KP metabolites, proinflammatory biomarkers, and brain-derived neurotrophic factor (BDNF) in healthy controls (HC) and the patients with TRD whose followed up with three different treatments. Moreover, the effect of electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) on biomarkers was investigated. Study groups comprised a total of 30 unipolar TRD patients consisting of three separate patient groups (ECT = 8, rTMS = 10, pharmacotherapy = 12), and 9 HC. The decision to administer only pharmacotherapy or ECT/rTMS besides pharmacotherapy was given independently of this research by psychiatrists. Blood samples and symptom scores were obtained three times for patients. At baseline, quinolinic acid (QUIN) was higher in the patients with TRD compared to HC, whereas picolinic acid (PIC), PIC/QUIN, and PIC/3-hydroxykynurenine were lower. Baseline interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hsCRP) were higher in nonresponders and non-remitters. ECT had an acute effect on cytokines. In the rTMS group, tumor necrosis factor-α (TNF-α) decreased in time. PIC, QUIN, and aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) enzyme may play a role in TRD pathogenesis, and have diagnostic potential. rTMS and ECT have modulatory effects on low-grade inflammation seen in TRD. Baseline inflammation severity is predictive in terms of response and remission in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Change history

References

  • Aarsland TI, Leskauskaite I, Midttun Ø, Ulvik A, Ueland PM, Oltedal L, Erchinger VJ, Oedegaard KJ, Haavik J, Kessler U (2019) The effect of electroconvulsive therapy (ECT) on serum tryptophan metabolites. Brain Stimul 12(5):1135–1142

    Article  Google Scholar 

  • Adu MK, Shalaby R, Chue P, Agyapong VI (2022) Repetitive transcranial magnetic stimulation for the treatment of resistant depression: a scoping Review. Behav Sci 12(6):195

    Article  Google Scholar 

  • Allen AP, Naughton M, Dowling J, Walsh A, O’Shea R, Shorten G, Scott L, McLoughlin D, Cryan JF, Clarke G (2018) Kynurenine pathway metabolism and the neurobiology of treatment-resistant depression: comparison of multiple ketamine infusions and electroconvulsive therapy. J Psychiatr Res 100:24–32

    Article  CAS  Google Scholar 

  • Amrhein V, Greenland S, McShane B (2019) Scientists rise up against statistical significance. Nature Publishing Group, Berlin

    Book  Google Scholar 

  • Baeken C, De Raedt R (2022) Neurobiological mechanisms of repetitive transcranial magnetic stimulation on the underlying neuro circuitry in unipolar depression. Dialogues Clin Neurosci. https://doi.org/10.3187/DCNS.2011.13.1/cbaeken

    Article  Google Scholar 

  • Battaglia S, Cardellicchio P, Di Fazio C, Nazzi C, Fracasso A, Borgomaneri S (2022a) The influence of vicarious fear-learning in ‘infecting’reactive action inhibition. Front Behav Neuroscie. https://doi.org/10.3389/fnbeh.2022.946263

    Article  Google Scholar 

  • Battaglia S, Cardellicchio P, Di Fazio C, Nazzi C, Fracasso A, Borgomaneri S (2022b) Stopping in (e) motion: reactive action inhibition when facing valence-independent emotional stimuli. Front Behav Neuroscie. https://doi.org/10.3389/fnbeh.2022.998714

    Article  Google Scholar 

  • Battaglia S, Serio G, Scarpazza C, D’Ausilio A, Borgomaneri S (2021) Frozen in (e) motion: How reactive motor inhibition is influenced by the emotional content of stimuli in healthy and psychiatric populations. Behav Res Ther 146:103963

    Article  Google Scholar 

  • Beninger R, Colton A, Ingles J, Jhamandas K, Boegman R (1994) Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience 61(3):603–612

    Article  CAS  Google Scholar 

  • Berlim MT, Turecki G (2007) Definition, assessment, and staging of treatment—resistant refractory major depression: a review of current concepts and methods. Canadian J Psychiatry 52(1):46–54

    Article  Google Scholar 

  • Brundin L, Sellgren C, Lim C, Grit J, Pålsson E, Landen M, Samuelsson M, Lundgren K, Brundin P, Fuchs D (2016) An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Transl Psychiatry 6(8):e865–e865

    Article  CAS  Google Scholar 

  • Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430

    Article  Google Scholar 

  • Carrera-González MDP, Cantón-Habas V, Rich-Ruiz M (2022) Aging, depression and dementia: the inflammatory process. Adv Clin Exp Med. https://doi.org/10.17219/acem/149897

    Article  Google Scholar 

  • Cathomas F, Guetter K, Seifritz E, Klaus F, Kaiser S (2021) Quinolinic acid is associated with cognitive deficits in schizophrenia but not major depressive disorder. Sci Rep 11(1):1–10

    Article  Google Scholar 

  • Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: Tryptophan’s metabolites in exercise inflammation, and mental health. Science 357(6349):eaff9794

    Article  Google Scholar 

  • Chen L-M, Bao C-H, Wu Y, Liang S-H, Wang D, Wu L-Y, Huang Y, Liu H-R, Wu H-G (2021) Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 18(1):1–13

    Article  CAS  Google Scholar 

  • Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res. https://doi.org/10.4137/IJTR.S2097

    Article  Google Scholar 

  • Colín-González AL, Maldonado PD, Santamaría A (2013) 3-Hydroxykynurenine: an intriguing molecule exerting dual actions in the central nervous system. Neurotoxicology 34:189–204

    Article  Google Scholar 

  • Colle R, Masson P, Verstuyft C, Fève B, Werner E, Boursier-Neyret C, Walther B, David DJ, Boniface B, Falissard B (2020) Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: a case–control study. Psychiatry Clin Neurosci 74(2):112–117

    Article  CAS  Google Scholar 

  • Correia AS, Vale N (2022) Tryptophan metabolism in depression: a narrative review with a focus on serotonin and kynurenine pathways. Int J Mol Sci 23(15):8493

    Article  CAS  Google Scholar 

  • Davidson JR, Abraham K, Connor KM, McLeod MN (2003) Effectiveness of chromium in atypical depression: a placebo-controlled trial. Biol Psychiat 53(3):261–264

    Article  CAS  Google Scholar 

  • Docherty JP, Sack DA, Roffman M, Finch M, Komorowski JR (2005) A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: effect on carbohydrate craving®. J Psychiatric Pract 11(5):302–314

    Article  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiat 67(5):446–457

    Article  CAS  Google Scholar 

  • Dugan AM, Parrott JM, Redus L, Hensler JG, O’Connor JC (2016) Low-level stress induces production of neuroprotective factors in wild-type but not BDNF+/-mice: interleukinand kynurenic acid. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyv089

    Article  Google Scholar 

  • Erabi H, Okada G, Shibasaki C, Setoyama D, Kang D, Takamura M, Yoshino A, Fuchikami M, Kurata A, Kato TA (2020) Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci Rep 10(1):1–8

    Article  Google Scholar 

  • Fitzgerald PB (2020) An update on the clinical use of repetitive transcranial magnetic stimulation in the treatment of depression. J Affect Disord 276:90–103

    Article  Google Scholar 

  • Fluitman SB, Heijnen CJ, Denys DA, Nolen WA, Balk FJ, Westenberg HG (2011) Electroconvulsive therapy has acute immunological and neuroendocrine effects in patients with major depressive disorder. J Affect Disord 131(1–3):388–392

    Article  CAS  Google Scholar 

  • Foster JA, Baker GB, Dursun SM (2021) The relationship between the gut microbiome-immune system-brain axis and major depressive disorder. Front Neurol 12:721126

    Article  Google Scholar 

  • Freire TFV, da Rocha NS, de Almeida Fleck MP (2017) The association of electroconvulsive therapy to pharmacological treatment and its influence on cytokines. J Psychiatr Res 92:205–211

    Article  Google Scholar 

  • Gałecka M, Bliźniewska-Kowalska K, Maes M, Su K-P, Gałecki P (2021) Update on the neurodevelopmental theory of depression: is there any ‘unconscious code’? Pharmacol Rep 73(2):346–356

    Article  Google Scholar 

  • Grant R, Coggan S, Smythe G (2009) The physiological action of picolinic acid in the human brain. Int J Tryptophan Res. https://doi.org/10.4137/IJTR.S2469

    Article  Google Scholar 

  • Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365

    Article  CAS  Google Scholar 

  • Guloksuz S, Arts B, Walter S, Drukker M, Rodriguez L, Myint A-M, Schwarz MJ, Ponds R, van Os J, Kenis G (2015) The impact of electroconvulsive therapy on the tryptophan–kynurenine metabolic pathway. Brain Behav Immun 48:48–52

    Article  CAS  Google Scholar 

  • Guloksuz S, Rutten BP, Arts B, van Os J, Kenis G (2014) The immune system and electroconvulsive therapy for depression. J ECT 30(2):132–137

    Article  CAS  Google Scholar 

  • Guo F, Lou J, Han X, Deng Y, Huang X (2017) Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke. Front Physiol 8:559

    Article  Google Scholar 

  • Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215

    Article  CAS  Google Scholar 

  • Hacimusalar Y, Esel E (2018) Suggested biomarkers for major depressive disorder. Arch Neuropsychiatry 55(3):280

    Google Scholar 

  • Hare BD, Duman RS (2020) Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry 25(11):2742–2758

    Article  Google Scholar 

  • Hepsomali P, Coxon C (2022) Inflammation and diet: focus on mental and cognitive health. Adv Clin Exp Med. https://doi.org/10.17219/acem/152350

    Article  Google Scholar 

  • Hunt C, e Cordeiro TM, Suchting R, de Dios C, Leal VAC, Soares JC, Dantzer R, Teixeira AL, Selvaraj S, (2020) Effect of immune activation on the kynurenine pathway and depression symptoms–a systematic review and meta-analysis. Neurosci Biobehav Rev 118:514–523

    Article  CAS  Google Scholar 

  • Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112:399–412

    Article  CAS  Google Scholar 

  • Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C (2020) Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry 25(2):321–338

    Article  Google Scholar 

  • Kopra E, Mondelli V, Pariante C, Nikkheslat N (2021) Ketamine’s effect on inflammation and kynurenine pathway in depression: a systematic review. J Psychopharmacol 35(8):934–945

    Article  CAS  Google Scholar 

  • Köhler CA, Freitas TH, Maes Md, De Andrade N, Liu C, Fernandes B, Stubbs B, Solmi M, Veronese N, Herrmann N (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135(5):373–387

    Article  Google Scholar 

  • Krause D, Suh H-S, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao M-L (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179(3):1360–1372

    Article  CAS  Google Scholar 

  • Leblhuber F, Geisler S, Ehrlich D, Steiner K, Reibnegger G, Fuchs D, Kurz K (2021) Repetitive transcranial magnetic stimulation in the treatment of resistant depression: changes of specific neurotransmitter precursor amino acids. J Neural Transm 128(8):1225–1231

    Article  CAS  Google Scholar 

  • Leblhuber F, Steiner K, Fuchs D (2019) Treatment of patients with geriatric depression with repetitive transcranial magnetic stimulation. J Neural Transm 126(8):1105–1110

    Article  CAS  Google Scholar 

  • Lehtimäki K, Keränen T, Huuhka M, Palmio J, Hurme M, Leinonen E, Peltola J (2008) Increase in plasma proinflammatory cytokines after electroconvulsive therapy in patients with depressive disorder. J ECT 24(1):88–91

    Article  Google Scholar 

  • Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RA, Bromberg E, de Vries EF (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56(5):3295–3312

    Article  CAS  Google Scholar 

  • Martos D, Tuka B, Tanaka M, Vécsei L, Telegdy G (2022) Memory enhancement with kynurenic acid and its mechanisms in neurotransmission. Biomedicines 10(4):849

    Article  CAS  Google Scholar 

  • Marx W, McGuinness AJ, Rocks T, Ruusunen A, Cleminson J, Walker AJ, Gomes-da-Costa S, Lane M, Sanches M, Diaz AP (2020) The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: a meta-analysis of 101 studies. Molecular psychiatry:1–21

  • Miller AH (2013) Conceptual confluence: the kynurenine pathway as a common target for ketamine and the convergence of the inflammation and glutamate hypotheses of depression. Neuropsychopharmacology 38(9):1607–1608

    Article  CAS  Google Scholar 

  • O’Mahony SM, Clarke G, Borre Y, Dinan TG, Cryan J (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48

    Article  Google Scholar 

  • Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, Wada M, Tarumi R, Plitman E, Moriguchi S (2018) Kynurenine pathway in depression: a systematic review and meta-analysis. Neurosci Biobehav Rev 90:16–25

    Article  CAS  Google Scholar 

  • Okamoto N, Natsuyama T, Igata R, Konishi Y, Tesen H, Ikenouchi A, Yoshimura R (2021) Associations between the kynurenine pathway, proinflammatory cytokines, and brain-derived neurotrophic factor in hospitalized patients with chronic schizophrenia: a preliminary study. Front Psychiatry. https://doi.org/10.3389/fpsyt.2021.696059

    Article  Google Scholar 

  • Osimo EF, Pillinger T, Rodriguez IM, Khandaker GM, Pariante CM, Howes OD (2020) Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun 87:901–909

    Article  CAS  Google Scholar 

  • Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Rev Dis Primers 2(1):1–20

    Article  Google Scholar 

  • Petronijević N, Lane H-Y, Radonjić NV (2022) Modulation of NMDA receptors: from bench side to clinical applications in psychiatry. Front Psychiatry. https://doi.org/10.3389/fpsyt.2022.896327

    Article  Google Scholar 

  • Pizzagalli DA, Roberts AC (2022) Prefrontal cortex and depression. Neuropsychopharmacology 47(1):225–246

    Article  Google Scholar 

  • Ramírez Ortega D, UgaldeMuñiz PE, Blanco Ayala T, Vázquez Cervantes GI, Lugo Huitrón R, Pineda B, González Esquivel DF, Pérez de la Cruz G, Pedraza Chaverrí J, Sánchez Chapul L (2021) On the antioxidant properties of L-kynurenine: An efficient ROS scavenger and enhancer of rat brain antioxidant defense. Antioxidants 11(1):31

    Article  Google Scholar 

  • Réus GZ, Jansen K, Titus S, Carvalho AF, Gabbay V, Quevedo J (2015) Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: evidences from animal and human studies. J Psychiatr Res 68:316–328

    Article  Google Scholar 

  • Rotter A, Biermann T, Stark C, Decker A, Demling J, Zimmermann R, Sperling W, Kornhuber J, Henkel A (2013) Changes of cytokine profiles during electroconvulsive therapy in patients with major depression. J ECT 29(3):162–169

    Article  CAS  Google Scholar 

  • Rózsa E, Robotka H, Vécsei L, Toldi J (2008) The Janus-face kynurenic acid. J Neural Transm 115(8):1087–1091

    Article  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am J Psychiatry 163(11):1905–1917

    Article  Google Scholar 

  • Ryan KM, Allers KA, McLoughlin DM, Harkin A (2020) Tryptophan metabolite concentrations in depressed patients before and after electroconvulsive therapy. Brain Behav Immun 83:153–162

    Article  CAS  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10(9):1110–1115

    Article  CAS  Google Scholar 

  • Sas K, Szabó E, Vécsei L (2018) Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules 23(1):191

    Article  Google Scholar 

  • Sathyasaikumar K, Tararina M, Wu H-Q, Neale S, Weisz F, Salt T, Schwarcz R (2017) Xanthurenic acid formation from 3-hydroxykynurenine in the mammalian brain: neurochemical characterization and physiological effects. Neuroscience 367:85–97

    Article  CAS  Google Scholar 

  • Savitz J (2020) The kynurenine pathway: a finger in every pie. Mol Psychiatry 25(1):131–147

    Article  Google Scholar 

  • Savitz J, Drevets WC, Smith CM, Victor TA, Wurfel BE, Bellgowan PS, Bodurka J, Teague TK, Dantzer R (2015) Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacology 40(2):463–471

    Article  CAS  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477

    Article  CAS  Google Scholar 

  • Schwieler L, Samuelsson M, Frye MA, Bhat M, Schuppe-Koistinen I, Jungholm O, Johansson AG, Landén M, Sellgren CM, Erhardt S (2016) Electroconvulsive therapy suppresses the neurotoxic branch of the kynurenine pathway in treatment-resistant depressed patients. J Neuroinflammation 13(1):1–10

    Article  Google Scholar 

  • Skorobogatov K, De Picker L, Verkerk R, Coppens V, Leboyer M, Müller N, Morrens M (2021) Brain versus blood: a systematic review on the concordance between peripheral and central kynurenine pathway measures in psychiatric disorders. Front Immunol. https://doi.org/10.3389/fimmu.2021.716980

    Article  Google Scholar 

  • Strawbridge R, Young AH, Cleare AJ (2017) Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatri Dis Treat. https://doi.org/10.2147/NDT.S114542

    Article  Google Scholar 

  • Tanaka M, Bohár Z, Martos D, Telegdy G, Vécsei L (2020) Antidepressant-like effects of kynurenic acid in a modified forced swim test. Pharmacol Rep 72(2):449–455

    Article  CAS  Google Scholar 

  • Tanaka M, Spekker E, Szabó Á, Polyák H, Vécsei L (2022a) Modelling the neurodevelopmental pathogenesis in neuropsychiatric disorders. Bioactive kynurenines and their analogues as neuroprotective agents—in celebration of 80th birthday of Professor Peter Riederer. J Neural Transmission. https://doi.org/10.1007/s00702-022-02513-5

    Article  Google Scholar 

  • Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L (2022b) Mitochondrial impairment: a common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. Cells 11(16):2607

    Article  CAS  Google Scholar 

  • Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L (2021) Immune influencers in action: metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines 9(7):734

    Article  CAS  Google Scholar 

  • Tanaka M, Vécsei L (2021) Monitoring the kynurenine system: concentrations, ratios or what else? Adv Clin Exp Med 30(8):775–778

    Article  Google Scholar 

  • Tateishi H, Setoyama D, Kang D, Matsushima J, Kojima R, Fujii Y, Mawatari S, Kikuchi J, Sakemura Y, Fukuchi J (2021) The changes in kynurenine metabolites induced by rTMS in treatment-resistant depression: a pilot study. J Psychiatr Res 138:194–199

    Article  Google Scholar 

  • Ueyama E, Ukai S, Ogawa A, Yamamoto M, Kawaguchi S, Ishii R, Shinosaki K (2011) Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 65(1):77–81

    Article  Google Scholar 

  • van Buel EM, Patas K, Peters M, Bosker FJ, Eisel UL, Klein HC (2015) Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? Transl Psychiatry 5(7):e609–e609

    Article  Google Scholar 

  • WHO (2017) Depression and other common mental disorders: global health estimates. World Health Organization,

  • Williams LM, Coman JT, Stetz PC, Walker NC, Kozel FA, George MS, Yoon J, Hack LM, Madore MR, Lim KO (2021) Identifying response and predictive biomarkers for transcranial magnetic stimulation outcomes: protocol and rationale for a mechanistic study of functional neuroimaging and behavioral biomarkers in veterans with Pharmacoresistant depression. BMC Psychiatry 21(1):1–17

    Article  Google Scholar 

  • Yrondi A, Sporer M, Peran P, Schmitt L, Arbus C, Sauvaget A (2018) Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. Brain Stimul 11(1):29–51

    Article  Google Scholar 

  • Zádor F, Joca S, Nagy-Grócz G, Dvorácskó S, Szűcs E, Tömböly C, Benyhe S, Vécsei L (2021) Pro-Inflammatory Cytokines: potential links between the endocannabinoid system and the kynurenine pathway in depression. Int J Mol Sci 22(11):5903

    Article  Google Scholar 

  • Zhang J-c, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14(7):721–731

    Article  CAS  Google Scholar 

  • Zhao X, Li Y, Tian Q, Zhu B, Zhao Z (2019) Repetitive transcranial magnetic stimulation increases serum brain-derived neurotrophic factor and decreases interleukin-1β and tumor necrosis factor-α in elderly patients with refractory depression. J Int Med Res 47(5):1848–1855

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants who attended our study. We also thank Reyhan Canbay, Aycan Kayalar, and all nurses from the psychiatry departments in GUFM, and HSU GTRH, biochemistry and psychiatry doctors in GUFM, Prof. Dr. Behcet Cosar from GUFM, and Prof.Dr. Kamil Nahit Ozmenler from HSU GTRH.

Funding

The research was supported by Gazi University Scientific Research Projects with project number 01/2018—30.

Author information

Authors and Affiliations

Authors

Contributions

NSY: conceptualization, data curation, ınvestigation, methodology, project administration, resources, supervision, visualization, writing—original draft, and writing—review and editing. BS: conceptualization, data curation, ınvestigation, methodology, visualization, and writing—review and editing. RFK: conceptualization, methodology, project administration, and supervision. SA: conceptualization, methodology, project administration, and supervision. IEE: conceptualization, ınvestigation, and methodology ab: ınvestigation, methodology, and resources. SC: ınvestigation, methodology, and resources. AB: conceptualization and methodology. HU: ınvestigation, methodology, and resources. CK: data curation, formal analysis, and visualization. CC: conceptualization, methodology, funding acquisition, project administration, and supervision. NB: conceptualization, funding acquisition, ınvestigation, methodology, project administration, supervision, and writing—review and editing.

Corresponding author

Correspondence to Niyazi Samet Yilmaz.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical approval

The study began and performed with the approval of GUFM Clinical Research Ethics Committee (Date/Number: 12.02.2018/99, and 24.09.2018/688).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material (RAR 12794 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, N.S., Sen, B., Karadag, R.F. et al. A kynurenine pathway enzyme aminocarboxymuconate-semialdehyde decarboxylase may be involved in treatment-resistant depression, and baseline inflammation status of patients predicts treatment response: a pilot study. J Neural Transm 129, 1513–1526 (2022). https://doi.org/10.1007/s00702-022-02553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-022-02553-x

Keywords

Navigation