Skip to main content

Advertisement

Log in

Na+ leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson’s disease

  • Psychiatry and Preclinical Psychiatric Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a debilitating movement disorder often accompanied by neuropsychiatric symptoms that stem from the loss of dopaminergic function in the basal ganglia and altered neurotransmission more generally. Akinesia, postural instability, tremors and frozen gait constitute the major motor disturbances, whereas neuropsychiatric symptoms include altered circadian rhythms, disordered sleep, depression, psychosis and cognitive impairment. Evidence is emerging that the motor and neuropsychiatric symptoms may share etiologic factors. Calcium/ion channels (CACNA1C, NALCN), synaptic proteins (SYNJ1) and neuronal RNA-binding proteins (RBFOX1) are among the risk genes that are common to PD and various psychiatric disorders. The Na+ leak-current channel (NALCN) is the focus of this review because it has been implicated in dystonia, regulation of movement, cognitive impairment, sleep and circadian rhythms. It regulates the resting membrane potential in neurons, mediates pace-making activity, participates in synaptic vesicle recycling and is functionally co-localized to the endoplasmic reticulum (ER)—several of the major processes adversely affected in PD. Here, we summarize the literature on mechanisms and pathways that connect the motor and neuropsychiatric symptoms of PD with a focus on recurring relationships to the NALCN. It is hoped that the various connections outlined here will stimulate further discussion, suggest additional areas for exploration and ultimately inspire novel treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarsland D, Bronnick K, Williams-Gray C et al (2010) Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 75(12):1062–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aberg KA, Liu Y, Bukszar J et al (2013) A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiat 70(6):573–581

    CAS  Google Scholar 

  • Adayey T, Chen-Hwang MC, Murakami N, Wang R, Hwang YW (2006) MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem Biophys Res Commun 351:1060–1065

    Google Scholar 

  • Al-Sayed MD, Al-Zaiden H, Albakheet A et al (2013) Mutations in NALCN cause an autosomal-recessive syndrome with severe hypotonia, speech impairment, and cognitive delay. Am J Hum Genet 93:721–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Walker DE, Goldstein JM et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    CAS  PubMed  Google Scholar 

  • Angius A, Cossu S, Uva P et al (2018) Novel NALCN biallelic truncating mutations in siblings with IHPRF1 syndrome. Clin Genet 93(6):1245–1247

    CAS  PubMed  Google Scholar 

  • Apps MC, Sheaff PC, Ingram DA, Kennard C, Empey DW (1985) Respiration and sleep in Parkinson’s disease. J Neurol Neurosurg Psychiatry 48(12):1240–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arranz AM, Delbroek L, Van Kolen K et al (2015) LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci 128:541–555

    CAS  PubMed  Google Scholar 

  • Askenasy JJ (1993) Sleep in Parkinson’s disease. Acta Neurol Scand 87:167–170

    CAS  PubMed  Google Scholar 

  • Baille G, De Jesus AM, Perez T et al (2016) Ventilatory dysfunction in Parkinson’s disease. J Parkinsons Dis 6:463–471

    PubMed  PubMed Central  Google Scholar 

  • Bargiotas P, Ntafouli M, Lachenmayer LM, Krack P, Schüpbach WM, Bassetti CL (2019) Apathy in Parkinson’s disease with REM sleep behavior disorder. J Neurol Sci 399:194–198

    PubMed  Google Scholar 

  • Baum AE, Akula N, Cabanero M et al (2008) A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13:197–207

    CAS  PubMed  Google Scholar 

  • Beaulieu JM (2012) A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37(1):7–16

    PubMed  PubMed Central  Google Scholar 

  • Belarbi S, Hecham N, Lesage S et al (2010) LRRK2 G2019S mutation in Parkinson’s disease: a neuropsychological and neuropsychiatric study in a large Algerian cohort. Parkinsonism Relat Disord 16(10):675–679

    Google Scholar 

  • Bend EG, Shi Y, Stevenson DA, Bayrak-Toydemir P, Newcomb TM, Jorgensen EM, Swoboda KJ (2016) NALCN channelopathies: distinguishing gain-of-function and loss-of-function mutations. Neurology 87:1131–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function—implications for Parkinson’s disease. J Neurochem 137:331–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge M (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235–249

    CAS  PubMed  Google Scholar 

  • Billcliff PG, Lowe M (2014) Inositol lipid phosphatases in membrane trafficking and human disease. Biochem J 461:159–175

    CAS  PubMed  Google Scholar 

  • Bloomfield SA, Völgyi B (2009) The diverse functional roles of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnett K, Zweig R, Aamodt EJ, Dwyer DS (2014) Food deprivation and nicotine correct akinesia in Na+-leak current channel (NALCN)-deficient strains of Caenorhabditis elegans. Genes Brain Behav 13:633–642

    CAS  PubMed  Google Scholar 

  • Bouhours M, Po MD, Gao S et al (2011) A co-operative regulation of neuronal excitability by UNC-7 innexin and NCA/NALCN leak channel. Mol Brain 4:16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourque DK, Dyment DA, MacLusky I et al (2018) Periodic breathing in patients with NALCN mutations. J Hum Genet 63(10):1093–1096

    CAS  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    PubMed  Google Scholar 

  • Braak H, Sastre M, Bohl JR, de Vos RA, Del Tredici K (2007) Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and post-ganglionic neurons. Acta Neuropathol 113(4):421–429

    PubMed  Google Scholar 

  • Brainstorm Consortium, Anttila V, Bulik-Sullivan B, et al. (2018) Analysis of shared heritability in common disorders of the brain. Science 360(6395):eaap8757

    Google Scholar 

  • Breen DP, Vuono R, Nawarathna U et al (2014) Sleep and circadian rhythm regulation in early Parkinson’s disease. JAMA Neurol 7(5):589–595

    Google Scholar 

  • Breydo L, Wu JW, Uversky VN (2012) α-Synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285

    CAS  PubMed  Google Scholar 

  • Campbell J, FitzPatrick DR, Azam T et al (2018) NALCN dysfunction as a cause of disordered respiratory rhythm with central apnea. Pediatrics 141(Suppl 5):S485–S490

    PubMed  Google Scholar 

  • Chen Z, Li G, Liu J (2020) Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis and treatment. Neurobiol Dis 134(2020):104700

    PubMed  Google Scholar 

  • Chiu W, Kovacheva L, Musgrove RE et al (2021) α-Synuclein-induced Kv4 channelopathy in mouse vagal motoneurons drives nonmotor parkinsonian symptoms. Sci Adv 7:eabd3994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong JX, McMillin MJ, Shively KM et al (2015) De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet 96:462–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cochet-Bissuel M, Lory P, Monteil A (2014) The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 8:132

    PubMed  PubMed Central  Google Scholar 

  • Cooper G, Lasser-Katz E, Simchovitz A et al (2015) Functional segregation of voltage-activated calcium channels in motoneurons of the dorsal motor nucleus of the vagus. J Neurophysiol 114:1513–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalrymple-Alford JC, Livingston L, MacAskill MR et al (2011) Characterizing mild cognitive impairment in Parkinson’s disease. Mov Disord 26(4):629–636

    PubMed  Google Scholar 

  • De la Riva P, Smith K, Xie S, Weintraub D (2014) Course of psychiatric symptoms and global cognition in early Parkinson’s disease. Neurology 83:1096–1103

    PubMed  PubMed Central  Google Scholar 

  • De Pablo-Fernandez E, Sierra-Hidalgo F, Benito-Leon J, Bermejo-Pareia F (2017) Association between Parkinson’s disease and diabetes: data from NEDICES study. Acta Neurol Scand 136:732–736

    PubMed  Google Scholar 

  • Degos B, Deniau JM, Chavez M, Maurice N (2013) Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat. PLoS ONE 8:3608

    Google Scholar 

  • Del Tredici K, Jost WH (2012) Gastrointestinal dysfunction in idiopathic Parkinson’s disease. Nervenarzt 83:1282–1291

    PubMed  Google Scholar 

  • Deutch AY, Goldstein M, Baldino F Jr, Roth RH (1988) Telencephalic projections of the A8 dopamine cell group. Ann NY Acad Sci 537:27–50

    CAS  PubMed  Google Scholar 

  • Dunn EC, Wiste A, Radmanesh F et al (2016) Genome-wide association study (GWAS) and genome-wide by environment interaction study (GWEIS) of depressive symptoms in African American and Hispanic/Latina women. Depress Anxiety 33(4):265–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer DS, Aamodt EJ (2013) Insulin/IGF-1 signaling, including class II/III PI3Ks, β-arrestin and SGK-1, is required in C. elegans to maintain pharyngeal muscle performance during starvation. PLoS ONE 8:e63851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engmann B (2011) Bipolar affective disorder and Parkinson’s disease. Case Rep Med 2011:154165

    PubMed  PubMed Central  Google Scholar 

  • Erriquez J, Gilardino A, Ariano P, Munaron L, Lovisolo D, Ditasi C (2005) Calcium signals activated by arachidonic acid in embryonic chick ciliary ganglion neurons. Neurosignals 14:244–254

    CAS  PubMed  Google Scholar 

  • Esposito G, Clara FA, Verstreken P (2012) Synaptic vesicle trafficking and Parkinson’s disease. Dev Neurobiol 72:134–144

    CAS  PubMed  Google Scholar 

  • Faustino PR, Duarte G, Chendo I et al (2020) Risk of developing Parkinson disease in bipolar disorder: a systematic review and meta-analysis. JAMA Neurol 77(2):192–198

    PubMed  Google Scholar 

  • Franklin C, Dwyer DS (2020) Candidate risk genes for bipolar disorder are highly conserved during evolution and highly interconnected. Bipolar Disord. https://doi.org/10.1111/bdi.12996 (Online ahead of print)

    Article  PubMed  Google Scholar 

  • French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in Parkinson’s disease. Front Aging Neurosci 10:99

    PubMed  PubMed Central  Google Scholar 

  • Funato H, Miyoshi C, Fujiyama T et al (2016) Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 539:378–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser T (2009) Mendelian forms of Parkinson’s disease. Biochim Biophys Acta 1792:587–596

    CAS  PubMed  Google Scholar 

  • Getz SJ, Levin B (2017) Cognitive and neuropsychiatric features of early Parkinson’s disease. Arch Clin Neuropsychol 32:769–785

    PubMed  Google Scholar 

  • Ghezzi A, Liebeskind BJ, Thompson A, Atkinson NS, Zakon HH (2014) Ancient association between cation leak channels and Mid1 proteins is conserved in fungi and animals. Front Mol Neurosci 7:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giladi N, Treves TA, Paleacu D et al (2000) Risk factors for dementia, depression and psychosis in long-standing Parkinson’s disease. J Neural Transm 107:59–71

    CAS  PubMed  Google Scholar 

  • Goldberg JA, Guzman JN, Estep CM et al (2012) Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat Neurosci 15(10):1414–1421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez Pinilla PJ, Hernandez AT, Camello MC, Pozo MJ, Toescu EC, Camello PJ (2005) Non-stimulated Ca2+ leak pathway in cerebellar granule neurons. Biochem Pharmacol 70:786–793

    Google Scholar 

  • He Y, Ji X, Yan H et al (2018) Biallelic UNC80 mutations caused infantile hypotonia with psychomotor retardation and characteristic facies 2 in two Chinese patients with variable phenotypes. Gene 660:13–17

    CAS  PubMed  Google Scholar 

  • Hobson P, Meara J (2015) Mild cognitive impairment in Parkinson’s disease and its progression onto dementia: a 16 year outcome evaluation of the Denbighshire cohort. Int J Geriatr Psychiatry 30(10):1048–1055

    PubMed  Google Scholar 

  • Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711

    CAS  PubMed  Google Scholar 

  • Huang H, Hayden DJ, Zhu C-T, Bennett HL, Venkatachalam V, Skuja LL, Hart AC (2018) Gap junctions and NCA cation channels are critical for developmentally timed sleep and arousal in Caenorhabditis elegans. Genetics 210:1369–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang MH, Cheng CM, Huang KL et al (2019) Bipolar disorder and risk of Parkinson disease: a nationwide longitudinal study. Neurology 92(24):e2735–e2742

    PubMed  Google Scholar 

  • Humphrey JA, Hamming KS, Thacker CM et al (2007) A putative cation channel and its novel regulator: cross-species conservation of effects on general anesthesia. Curr Biol 17:624–629

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2014) The pathomechanisms underlying Parkinson’s disease. Expert Rev Neurother 14:199–215

    CAS  PubMed  Google Scholar 

  • Ji W, Li T, Pan Y et al (2013) CNTNAP2 is significantly associated with schizophrenia and major depression in the Han Chinese population. Psychiatry Res 207(3):225–228

    CAS  PubMed  Google Scholar 

  • Jospin M, Watanabe S, Joshi D et al (2007) UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr Biol 7:1595–1600

    Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    CAS  PubMed  Google Scholar 

  • Karimi K, Gemmill TR, Lennartz MR (1999) Protein kinase C and a calcium-independent phospholipase are required for IgG-mediated phagocytosis by Mono-Mac-6 cells. J Leukoc Biol 65:854–862

    CAS  PubMed  Google Scholar 

  • Kasap M, Bonnett K, Aamodt EJ, Dwyer DS (2017) Akinesia and freezing caused by Na+ leak-current channel (NALCN) deficiency corrected by pharmacological inhibition of K+ channels and gap junctions. J Comp Neurol 525:1109–1121

    CAS  PubMed  Google Scholar 

  • Kasap M, Aamodt EJ, Sagrera CE, Dwyer DS (2019) Novel pharmacological modulation of dystonic phenotypes caused by a gain-of-function mutation in the Na+ leak-current channel (NALCN). Behav Pharmacol. https://doi.org/10.1097/FBP.0000000000000526 (Epub ahead of print)

    Article  Google Scholar 

  • Katchen M, Duvoisin R (1986) Parkinsonism following dystonia in three patients. Mov Disord 1(2):151–157

    CAS  PubMed  Google Scholar 

  • Khaliq ZM, Bean BP (2010) Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 30:7401–7413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79:942–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Sung JY, Lee HJ et al (2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem 281:33250–33257

    CAS  PubMed  Google Scholar 

  • Kim BJ, Chang IY, Choi S et al (2012) Involvement of Na(+)-leak channel is substance P-induced depolarization of pacemaking activity in interstitial cells of Cajal. Cell Physiol Biochem 29(3–4):501–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klawans HL, Paleologos N (1986) Dystonia-Parkinson syndrome: differential effects of levodopa and dopamine agonists. Clin Neuropharmacol 9(3):298–302

    CAS  PubMed  Google Scholar 

  • Klemann CJH, Martens GJM, Sharma M et al (2017) Integrated molecular landscape of Parkinson’s disease. NPJ Parkinsons Dis 3:14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konno T, Ross OA, Puschmann A, Dickson DW, Wszolek ZK (2016) Autosomal dominant Parkinson’s disease caused by SNCA duplications. Parkinsonism Relat Disord 22(Suppl 1):S1–S6

    PubMed  Google Scholar 

  • Koroglu C, Seven M, Tolun A (2013) Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. J Med Genet 50:515–520

    CAS  PubMed  Google Scholar 

  • Kwon E, Wang W, Tsai LH (2013) Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry 18:11–12

    CAS  PubMed  Google Scholar 

  • Lasater EM, Dowling JE (1985) Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci USA 82:3025–3029

    CAS  PubMed  Google Scholar 

  • Lasser-Katz E, Simchovitz A, Chiu W et al (2017) Mutant α-synuclein overexpression induces stressless pacemaking in vagal motoneurons at risk in Parkinson’s disease. J Neurosci 37:47–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauretti E, Di Meco A, Merali S, Pratico D (2017) Circadian rhythm dysfunction: a novel environmental factor for Parkinson’s disease. Mol Psychiatry 22:280–286

    CAS  Google Scholar 

  • Lear BC, Lin J-M, Keath JR, McGill JJ, Raman IM, Allada R (2005) The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker. Neuron 48:965–976

    CAS  PubMed  Google Scholar 

  • LeWitt PA, Burns RS, Newman RP (1986) Dystonia in untreated parkinsonism. Clin Neuropharmacol 9(3):293–297

    CAS  PubMed  Google Scholar 

  • Liebeskind BJ, Hillis DM, Zako HH (2012) Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade. Mol Biol Evol 29:3613–3616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Limousin N, Konofal E, Karroum E et al (2009) Restless legs syndrome, rapid eye movement sleep behavior disorder and hypersomnia in patients with two parkin mutations. Mov Disord 24(13):1970–1976

    PubMed  Google Scholar 

  • Lin L, Goke J, Cukuroglu E, Dranias MR, VanDongen AMJ, Stanton LW (2016) Molecular features underlying neurodegeneration identified through in vitro modeling of genetically diverse Parkinson’s disease patients. Cell Rep 15(11):2411–2416

    CAS  PubMed  Google Scholar 

  • Lin E, Kuo PH, Liu YL, Yu YW, Yang AC, Tsai SJ (2018) A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry 9:290

    PubMed  PubMed Central  Google Scholar 

  • Litvan I, Goldman JG, Troster AI et al (2012) Daignostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov Disord 27(3):349–356

    PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang Y, Yang S, Wei H, Tuo M, Chang F, Wang Y (2019) Single nucleotide polymorphism array analysis uncovers a large, novel duplication in Xq13.1 in a floppy infant syndrome patient. Int J Dev Neurosci 74:56–60

    CAS  PubMed  Google Scholar 

  • Lotan A, Fenckova M, Bralten J et al (2014) Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 8:331

    PubMed  PubMed Central  Google Scholar 

  • Lu TZ, Feng Z-P (2011) A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS ONE 6:e18745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Su Y, Liu J, Xia J, Ren D (2007) The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129:371–383

    CAS  PubMed  Google Scholar 

  • Luciano M, Lopez LM, de Moor MH et al (2012) Longevity candidate genes and their association with personality traits in the elderly. Am J Med Genet B Neuropsychiatr Genet 159B(2):192–200

    PubMed  Google Scholar 

  • Lunati A, Lesage S, Brice A (2018) The genetic landscape of Parkinson’s disease. Rev Neurologique 174:628–643

    CAS  Google Scholar 

  • Luo D, Sun H, Lan X, Xiao R, Han Q (2005) Direct coupling between arachidonic acid-induced Ca2+ release and Ca2+ entry in HEK293 cells. Prostaglandins Other Lipid Mediat 75:141–151

    CAS  PubMed  Google Scholar 

  • Luo N, Sui J, Chen J et al (2018) A schizophrenia-related genetic-brain-cognition pathway revealed in a large Chinese population. EBioMedicine 37:471–482

    PubMed  PubMed Central  Google Scholar 

  • Lutas A, Lahmann AC, Soumillon M, Yellen G (2016) The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons. Elife 5:e15271

    PubMed  PubMed Central  Google Scholar 

  • Mitra T, Chaudhuri KR (2009) Sleep dysfunction and role of dysautonomia in Parkinson’s disease. Parkinsonism Relat Disord 15S3:S93–S95

    Google Scholar 

  • Mok KY, Schneider SA, Trabzuni D et al (2014) Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel. Mov Disord 29(2):245–251

    CAS  PubMed  Google Scholar 

  • Monastero R, Cicero CG, Baschi R et al (2018) Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS). J Neurol 265:1050–1058

    PubMed  Google Scholar 

  • Moon AL, Haan N, Wilkinson LS, Thomas KL, Hall J (2018) CACNA1C: association with psychiatric disorders, behavior and neurogenesis. Schizophr Bull 44(5):958–965

    PubMed  PubMed Central  Google Scholar 

  • Morgan PG, Sedensky M, Meneely PM (1990) Multiple sites of action of volatile anesthetics in Caenorhabditis elegans. Proc Natl Acad Sci USA 87:2965–2969

    CAS  PubMed  Google Scholar 

  • Müller U, Haberhausen G, Wagner T, Fairweather ND, Chelly J, Monaco AP (1994) DXS106 and DXS559 flank the X-linked dystonia-parkinsonism syndrome locus (DYT3). Genomics 23:114–117

    PubMed  Google Scholar 

  • Nagy A, Schrag A (2019) Neuropsychiatric aspects of Parkinson’s disease. J Neural Transm 126:889–896

    PubMed  Google Scholar 

  • Nalls MA, Saad M, Noyce AJ et al (2014) Genetic comorbidities in Parkinson’s disease. Hum Mol Genet 23(3):831–841

    CAS  PubMed  Google Scholar 

  • Nash HA, Scott RL, Lear BC, Allada R (2002) An unusual cation channel mediates photic control of locomotion in Drosophila. Curr Biol 12:2152–2158

    CAS  PubMed  Google Scholar 

  • Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D (2019) Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci 42:140–149

    CAS  PubMed  Google Scholar 

  • Nicholson G, Pereira AC, Hall GM (2002) Parkinson’s disease and anesthesia. Br J Anaesthesia 89:904–916

    CAS  Google Scholar 

  • Niemann N, Jankovic J (2019) Juvenile parkinsonism: differential diagnosis, genetics, and treatment. Parkinsonism Rel Disord 67:74–89

    Google Scholar 

  • Nurnberger JI, Koller DL, Jung J et al (2014) Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiat 71:657–664

    CAS  Google Scholar 

  • Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28:31–40

    CAS  PubMed  Google Scholar 

  • Pagonabarraga J, Martinez-Horta S, Fernandez de Bobadilla R et al (2016) Minor hallucinations occur in drug-naïve Parkinson’s disease patients, even from the premotor phase. Mov Disord 31(1):45–52

    PubMed  Google Scholar 

  • Paisán-Ruiz C, Guevara R, Federoff M et al (2010) Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and Spatacsin mutations. Mov Disord 25(12):1791–1800

    PubMed  PubMed Central  Google Scholar 

  • Papapetropoulos S, Singer C (2006) Cervical dystonia as a presenting symptom of Parkinson’s disease. Parkinsonism Rel Disord 12:514–516

    Google Scholar 

  • Patel S, Sharma D, Kalia K, Tiwari V (2017) Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: the dawn of new therapeutic approaches. Neurosci Biobehav Rev 83:589–603

    CAS  PubMed  Google Scholar 

  • Paucar M, Lundin J, Alshammari T et al (2020) Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J Intern Med 288(1):103–115

    CAS  PubMed  Google Scholar 

  • Perez Y, Kadir R, Volodarsky M et al (2016) UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN. J Med Genet 53:397–402

    CAS  PubMed  Google Scholar 

  • Pfaffenseller B, Wollenhaupt-Aguiar B, Fries GR et al (2014) Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression. Int J Neuropharmacol 17(9):1453–1463

    CAS  Google Scholar 

  • Philippart F, Khaliq ZM (2018) Gi/o protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN. Elife 7:e40984

    PubMed  PubMed Central  Google Scholar 

  • Phookan S, Sutton AC, Walling I et al (2015) Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats. Exp Neurol 265:160–170

    CAS  PubMed  Google Scholar 

  • Piredda R, Desmarais P, Maselis M, Gasca-Salas C (2020) Cognitive and psychiatric symptoms in genetically determined Parkinson’s disease: a systematic review. Eur J Neurol 27:229–234

    CAS  PubMed  Google Scholar 

  • Postuma RB, Berg D (2016) Advances in markers of prodromal Parkinson disease. Nat Rev Neurol 12:622–634

    CAS  PubMed  Google Scholar 

  • Quadri M, Fang M, Picillo M et al (2013) Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat 34(9):1208–1215

    CAS  PubMed  Google Scholar 

  • Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You Y, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569–572

    CAS  PubMed  Google Scholar 

  • Ray NJ, Bradburn S, Murgatroyd C et al (2018) In vivo cholinergic basal forebrain atrophy predicting cognitive decline in de novo Parkinson’s disease. Brain 141(1):165–176

    PubMed  Google Scholar 

  • Ren D (2011) Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 72:899–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Martinez J, Azcona LJ, Bergareche A, Marti-Masso JF, Paisán-Ruiz C (2017) Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. Neurol Genet 3(5):e177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito T, Guan F, Papolos DF et al (2001) Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 6(4):387–395

    CAS  PubMed  Google Scholar 

  • Sandyk R (1993) The relationship between diabetes mellitus and Parkinson’s disease. Int J Neurosci 69:125–130

    CAS  PubMed  Google Scholar 

  • Schechter M, Atias M, Elhadi SA, Davidi D, Gitler D, Sharon R (2020) α-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphophate. J Biol Chem 295:18076–18080

    CAS  PubMed  Google Scholar 

  • Schwab BC, van Wezel RJA, van Gils SA (2017) Sparse pallidal connections shape synchrony in a network model of the basal ganglia. Eur J Neurosci 45:1000–1012

    PubMed  Google Scholar 

  • Seven M, Ozkiliç A, Yüksel A (2002) Dysmorphic face in two siblings with infantile neuroaxonal dystrophy. Genet Couns 13:465–473

    CAS  PubMed  Google Scholar 

  • Shamseldin HE, Faqeih E, Alasmari A, Zaki MS, Gleeson JG, Alkuraya FS (2016) Mutations in UNC80, encoding part of the UNC79-UNC80-NALCN channel complex, cause autosomal-recessive severe infantile encephalopathy. Am J Hum Genet 98:210–215

    CAS  PubMed  Google Scholar 

  • Sharma JC, Turton J (2012) Olfaction, dyskinesia and profile of weight change in Parkinson’s disease: identifying neurodegenerative phenotypes. Parkinsonism Relat Disord 18:964–970

    PubMed  Google Scholar 

  • Spatola M, Wider C (2014) Genetics of Parkinson’s disease: the yield. Parkinsonism Relat Disord 20S1:S35–S38

    Google Scholar 

  • Srivastava A, Tang MX, Mejia-Santana H et al (2011) The relation between depression and the parkin genotype: the CORE-PD study. Parkinsonism Relat Disord 17(10):740–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinlechner S, Stahlberg J, Völkel B et al (2007) Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. J Neurol Neurosurg Psychiatry 78(5):532–535

    PubMed  PubMed Central  Google Scholar 

  • Stray-Pedersen A, Cobben JM, Prescott TE et al (2016) Biallelic mutations in UNC80 cause persistent hypotonia, encephalopathy, growth retardation, and severe intellectual disability. Am J Hum Genet 98:202–209

    CAS  PubMed  Google Scholar 

  • Takenouchi T, Inaba M, Uehara T, Takahashi T, Kosaki K, Mizuno S (2018) Biallelic mutations in NALCN: expanding the genotypic and phenotypic spectra of IHPRF1. Am J Med Genet A 176:431–437

    CAS  PubMed  Google Scholar 

  • Topalidou I, Cooper K, Pereira L, Ailion M (2017) Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 13:e1007032

    PubMed  PubMed Central  Google Scholar 

  • Torsney KM, Forsyth D (2017) Respiratory dysfunction in Parkinson’s disease. J R Coll Physicians Edinb 47:35–39

    CAS  PubMed  Google Scholar 

  • Tran TN, Vo TN, Frei K, Truong DD (2018) Levodopa-indiced dyskinesia: clinical features, incidence, and risk factors. J Neural Transm 125:1109–1117

    CAS  PubMed  Google Scholar 

  • Verbeek EC, Bakker IMC, Bevova MR et al (2012) A fine-mapping study of 7 top scoring genes from GWAS for major depressive disorder. PLoS ONE 7:e37384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visanji NP, Sarvestani IK, Creed MC et al (2015) Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson’s disease. Front Cell Neurosci 9:221

    PubMed  PubMed Central  Google Scholar 

  • Wang KS, Liu XF, Aragam N (2010) A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr Res 124:192–199

    PubMed  Google Scholar 

  • Weintraub D, Burn DJ (2011) Parkinson’s disease: the quintessential neuropsychiatric disorder. Mov Disord 26(6):1022–1029

    PubMed  PubMed Central  Google Scholar 

  • Wichmann T, Kliem MA, DeLong MR (2001) Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp Neurol 167:410–424

    CAS  PubMed  Google Scholar 

  • Wirth T, Weibel S, Montaut S et al (2017) Severe early-onset impulsive compulsive behavior and psychosis in PLA3G6-related juvenile Parkinson’s disease. Parkinsonism Relat Disord 41:127–129

    CAS  PubMed  Google Scholar 

  • Xie L, Gao S, Alcaire SM et al (2013) NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron 77:1069–1082

    CAS  PubMed  Google Scholar 

  • Yan H, Pablo JI, Pitt GS (2013) FGF14 regulates presynaptic Ca2+ channels and synaptic transmission. Cell Rep 11(4):66–75

    Google Scholar 

  • Yeh E, Ng S, Zhang M, Bouhours M et al (2008) A putative cation channel, NCA-1, and a novel protein, UNC-80, transmit neuronal activity in C. elegans. PLoS Biol 6:e55

    PubMed  PubMed Central  Google Scholar 

  • Yemini E, Jucikas T, Grundy LJ, Brown AEX, Schafer WR (2013) A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods 10:877–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ying S, Cherlyn T, Woon PS et al (2010) Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 34(6):958–977

    Google Scholar 

  • Zhang T, Zhu L, Ni T et al (2018) Voltage-gated calcium channel activity and complex related genes and schizophrenia: a systematic investigation based on Han Chinese population. J Psychiatr Res 106:99–105

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Psychiatry and Behavioral Medicine at LSU Health Shreveport for support and Dr. Natali Chanaday for helpful comments and suggestions about the paper. In addition, we greatly appreciate two anonymous reviewers whose insightful feedback helped to improve the manuscript.

Funding

The research was not supported by outside funding.

Author information

Authors and Affiliations

Authors

Contributions

MK and DSD both conceived of the ideas contained in the article and contributed to writing and editing of the manuscript.

Corresponding author

Correspondence to Donard S. Dwyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasap, M., Dwyer, D.S. Na+ leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson’s disease. J Neural Transm 128, 749–762 (2021). https://doi.org/10.1007/s00702-021-02348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-021-02348-6

Keywords

Navigation