Skip to main content

Advertisement

Log in

Botulinum neurotoxin injections for muscle-based (dystonia and spasticity) and non-muscle-based (neuropathic pain) pain disorders: a meta-analytic study

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Apart from the known efficacy of Botulinum Neurotoxin Type A (BoNT/A) in hyperactive striated and smooth muscles, different pain states have become potential targets of toxin effects. This present study determined the comparative toxin effectiveness in pain reduction among those patients injected with BoNT/A in muscle-based and in non-muscle-based conditions. Randomized controlled trials (RCTs) on the effect of BoNT/A on selected pain conditions were included. The conditions were spasticity and dystonia for muscle-based pain. For non-muscle-based pain, conditions included were painful diabetic neuropathy (PDN), post-herpetic neuralgia (PHN), trigeminal neuralgia (TN), complex regional pain syndrome (CRPS), and spinal cord injury (SCI). In view of possibly differing pathophysiology, myofascial pain, temporomandibular joint (TMJ), other joint or tendon pains, cervicogenic and lumbar pains, migraine and visceral pain syndromes were excluded. Standardized mean difference was used as the effect measure and computed with STATA. 25 RCTs were analyzed. Pooled estimates showed significantly lower pain score in the Treatment group (z = 5.23, p < 0.01, 95% CI = – 0.75, – 0.34). Subgroup analyses showed that BoNT/A significantly reduced both muscle-based (z = 3.78, p < 0.01, 95% CI = – 0.72, – 0.23) and non-muscle-based (z = 3.37, p = 0.001, 95% CI = – 1.00, – 0.27) pain. Meta-regression using four covariates namely dosage, route, frequency and duration was done which revealed that dosage significantly affects standardized mean differences, while the other three covariates were insignificant. The joint F-test was found to be insignificant (p value = 0.1182). The application of the model with these covariates does not significantly explain the derived heterogeneity of standardized mean differences. In conclusion, BoNT/A can be effectively used in muscle-based and non-muscle-based pain disorders. We detected no difference between the presence and magnitude of pain relief favoring muscle-based compared to non-muscle-based pain. Thus, we cannot say whether or not there might be independent mechanisms of toxin-induced pain relief for pain generated from either muscle or nerve hyperactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike N, Shin M-C, Wakita M, Torii Y, Harakawa T, Ginnaga A, Kato K, Kaji R, Kozaki S (2013) Transsynaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol 591:1031–1043

    CAS  PubMed  Google Scholar 

  • Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki KR (2005) Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 26(5):785–793

    CAS  PubMed  Google Scholar 

  • Apalla Z, Sotiriou E, Lallas A et al (2013) Botulinum toxin A in postherpetic neuralgia: a parallel, randomized, double-blind, single-dose, placebo-controlled trial. Clin J Pain 29(10):857–864

    PubMed  Google Scholar 

  • Attal N, de Andrade D, Adam F, Ranoux D et al (2016) Safety and efficacy of repeated injections of botulinum toxin A in peripheral neuropathic pain (BOTNEP): a randomized, double-blind, placebo-controlled trial. Lancet Neurol 15(6):555–565

    CAS  PubMed  Google Scholar 

  • Babiloni AH, Kapos FP, Nixdorf DR (2016) Intraoral administration of botulinum toxin for trigeminal neuropathic pain. Oral Surg Oral Med Oral Pathol Oral Radiol 121(6):e148–e153

    Google Scholar 

  • Bach-Rojecky L, Lackovic Z (2005) Antinociceptive effect of botulinum toxin type a in rat model of carrageenan and capsaicin induced pain. Croat Med J 46(2):201–208

    PubMed  Google Scholar 

  • Bach-Rojecky L, Salkovic-Petrisic M, Lackovic Z (2010) Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur J Pharmacol 633:10–14

    CAS  PubMed  Google Scholar 

  • Bhakta BB, Cozens JA, Chamberlain MA et al (2000) Impact of botulinum toxin type A on disability and carer burden due to arm spasticity after stroke: a andomized double blind placebo-controlled trial. J Neurol Neurosurg Psychiatry 69:217–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bomba-Warczak E, Vevea JD, Brittain JM, Figueroa-Bernier A, Tepp WH, Johnson EA, Yeh FL, Chapman ER (2016) Interneuronal transfer and distal action of tetanus toxin and botulinum neurotoxins A and D in central neurons. Cell Rep 16:1974–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caleo M, Spinelli M, Colosimo F et al (2018) Transynaptic action of botulinum neurotoxin type A at central cholinergic boutons. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0294-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui M, Khanijou S, Rubino J et al (2014) Subcutaneous administration of botulinum toxin A reduces formalin- induced pain. Pain 107(1–2):125–133

    Google Scholar 

  • Delnooz C, van de Warrenburg B (2012) Current and future medical treatment in primary dystonia. Ther Adv Neurol Disord 5(4):221–240

    PubMed  PubMed Central  Google Scholar 

  • Favre-Guilmard C, Augue M, Chabrier P (2009) Different antinociceptive effects of botulinum toxin type A in inflammatory and peripheral polyneuropathic rat models. Eur J Pharmacol 617(1–3):48–53

    CAS  PubMed  Google Scholar 

  • Fheodoroff K, Jacinto J, Geurts A et al (2016) How can we improve current practice in spastic paresis? Eur Neurol Rev 11(2):79–86

    Google Scholar 

  • Ghasemi M, Ansari M, Basiri K et al (2014) The effects of intradermal botulinum toxin type a injections on pain symptoms of patients with diabetic neuropathy. J Res Med Sci 19(2):106–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gracies JM, Brashear A, Jech R et al (2015) Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury: a double-blind andomized controlled trial. Lancet Neurol 14(10):992–1001

    CAS  PubMed  Google Scholar 

  • Gwak Y, Hulsebosch C (2011) GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 60(5):799–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habek M, Karni A, Balash Y et al (2010) The place of the botulinum toxin in the management of multiple sclerosis. Clin Neurol Neurosurg 112:592–596

    PubMed  Google Scholar 

  • Han ZA, Song DH, Oh HM et al (2016) Botulinum toxin type A for neuropathic pain in patients with spinal cord injury. Ann Neurol 79(4):569–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse S, Mach H, Frohlich S et al (2011) An early botulinum toxin A treatment in subacute stroke patients may prevent a disabling finger flexor stiffness six months later: a randomized controlled trial. Clin Rehabil 26(3):237–245

    PubMed  Google Scholar 

  • Higgins JP, Thompson S (2002) Quantifying heterogeneity in meta-analysis. Stat Med 21(11):1539–1558

    PubMed  Google Scholar 

  • Kong KH, Neo JJ, Chua KS (2007) A randomized controlled study of botulinum toxin A in the treatment of hemiplegic shoulder pain associated with spasticity. Clin Rehabil 21(1):28–35

    PubMed  Google Scholar 

  • Lackovic Z, Rejia M (2018) Analgesic effects of botulinum toxins. In: Dressler D, Altenmuller E, Krauss JK (eds) Treatment of dystonia, vol 25, 1st edn. Cambridge University Press, Cambridge, pp 115–119

    Google Scholar 

  • Li G, Chang-an L, Tian L et al (2017) A randomized controlled trial of botulinum toxin A for neuropathic pain in patients with spinal cord injury. Medicine (Baltimore) 96(20):e6919

    CAS  Google Scholar 

  • Lim JY, Koh JH, Paik NJ (2008) Intramuscular botulinum toxin-A reduces hemiplegic shoulder pain: a randomized, double-blind, comparative study versus intraarticular triamcinolone acetonide. Stroke 39(1):126–131

    CAS  PubMed  Google Scholar 

  • Luvisetto S, Marinelli S, Cobianchi S et al (2007) Anti- allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience 145(1):1–4

    CAS  PubMed  Google Scholar 

  • Marco E, Duarte E, Vila J et al (2007) Is botulinum toxin type A effective in the treatment of spastic shoulder pain in patients after stroke? A double-blind randomized clinical trial. J Rehabil Med 39(6):440–447

    PubMed  Google Scholar 

  • Matak I, Lackovic Z (2014) Botulinum toxin A, brain and pain. Prog Neurobiol 119–120:39–59

    PubMed  Google Scholar 

  • McCory P, Turner-Stokes L, Baguley IJ et al (2009) Botulinum toxin a for treatment of upper limb spasticity following stroke: a multi-centre randomized placebo controlled study of the effects on quality of life and other person-centred outcomes. J Rehabil Med 41:536–544

    Google Scholar 

  • Melnyk B, Fineout-Overholt E (2010) Evidence-based practice in nursing and healthcare. Lippincott Williams & Wilkins, New York

    Google Scholar 

  • Mordin M, Masaquel C, Abbott C et al (2014) Factors affecting the health-related quality of life of patients with cervical dystonia and impact of treatment with abobotulinumtoxinA (Dysport): results from a andomized, double-blind, placebo-controlled study. BioMed J Open 4:e005150

    Google Scholar 

  • Ngeow WC, Nair R (2010) Injection of botulinum toxin type A (BOTOX) into trigger zone of trigeminal neuralgia as a means to control pain. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 109(3):e47–e50

    Google Scholar 

  • Pellet S (2012) Learning from the past: historical aspects of bacterial toxins as pharmaceuticals. Curr Opin Microbiol 15:292–299

    Google Scholar 

  • Pirazzini M, Rossetto O, Eleopra R et al (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69:200–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quagliato EM, Carelli EF, Viana MA (2010) A prospective, randomized, double-blind study comparing the efficacy and safety of type a botulinum toxins botox and Prosigne in the treatment of cervical dystonia. Clin Neuropharmacol 33(1):22–26

    CAS  PubMed  Google Scholar 

  • Rosales RL, Kong KH, Goh KJ et al (2012) Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabilit Neural Repair 26(7):812–821

    Google Scholar 

  • Safarpour Y, Jabbari B (2018) Botulinum toxin treatment of pain syndromes-an evidence-based review. Toxicon 147:120–128

    CAS  PubMed  Google Scholar 

  • Safarpour D, Salardini A, Richardson D et al (2010) Botulinum Toxin A for treatment of allodynia of complex regional pain syndrome: a pilot study. Pain Med 11:1411–1414

    PubMed  Google Scholar 

  • Shackleton T, Ram S, Black M et al (2016) The efficacy of botulinum toxin for the treatment of trigeminal and postherpetic neuralgia: a systematic review with meta-analyses. Oral Surg Oral Med Oral Pathol Oral Radiol 122(1):61–71

    PubMed  Google Scholar 

  • Shaw L, Rodgers H, Price C et al (2010) BoTULS: a andomized randomized controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technol Assess 14(26):1–146

    CAS  PubMed  Google Scholar 

  • Shehata HS, El-Tamawy MS, Shalaby NM et al (2013) Botulinum toxin-type A: could it be an effective treatment option in intractable trigeminal neuralgia? J Headache Pain 14(1):92

    PubMed  PubMed Central  Google Scholar 

  • Sterne JAC (2016) Meta-analysis in Stata: an updated collection from the Stata Journal, 2nd edn. Stata Press, College Station

    Google Scholar 

  • Supnet ML, Rosales R (2018) Indirect central nervous system effects of botulinum toxin. In: Dressler D, Altenmuller E, Krauss JK (eds) Treatment of dystonia, vol 23, 1st edn. Cambridge University Press, Cambridge, pp 106–110

    Google Scholar 

  • Truong D, Brodsky M, Lew M et al (2010) Long-term efficacy and safety of botulinum toxin type A (Dysport) in cervical dystonia. Parkinsonism Relat Disord 16:316–323

    PubMed  Google Scholar 

  • Valentine JC, Pigott TD, Rothstein HR (2010) How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat 35(2):215–247

    Google Scholar 

  • Weise D, Weise C, Naumann M (2019) Central effects of botulinum neurotoxin—evidence from human studies. Toxins 11:21

    CAS  PubMed Central  Google Scholar 

  • Wheeler A, Smith HS (2013) Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 306:124–146

    CAS  PubMed  Google Scholar 

  • Wiegand H, Wellhöner HH (1977) The action of botulinum A neurotoxin on the inhibition by antidromic stimulation of the lumbar monosynaptic reflex. Naunyn-Schmiedeberg’s Arch Pharmacol 298:235–238

    CAS  Google Scholar 

  • Wiegand H, Erdmann G, Wellhöner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn-Schmiedeberg’s Arch Pharmacol 292:161–165

    CAS  Google Scholar 

  • Wu CJ, Lian YJ, Zheng YK et al (2012) Botulinum toxin type A for the treatment of trigeminal neuralgia: results from a randomized, double-blind, placebo-controlled trial. Cephalalgia 32(6):443–450

    PubMed  Google Scholar 

  • Xiao L, Mackey S, Hui H et al (2010) Subcutaneous injection of botulinum toxin a is beneficial in postherpetic neuralgia. Pain Med 11(12):1827–1833

    PubMed  Google Scholar 

  • Yelnik AP, Colle FM, Bonan IV et al (2007) Treatment of shoulder pain in spastic hemiplegia by reducing spasticity of the subscapular muscle: a andomized, double blind, placebo controlled study of botulinum toxin A. J Neurol Neurosurg Psychiatry 78(8):845–848

    PubMed  Google Scholar 

  • Yuan RY, Sheu JJ, Yu JM et al (2009) Botulinum toxin for diabetic neuropathic pain: a randomized double-blind crossover trial. Neurology 72(17):1473–1478

    CAS  PubMed  Google Scholar 

  • Zhang H, Lian Y, Ma Y et al (2014) Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J Headache Pain 15(1):65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuniga C, Piedimonte F, Diaz S et al (2013) Acute treatment of trigeminal neuralgia with Onabotulinum Toxin A. Clin Neuropharmacol 35:146–150

    Google Scholar 

Download references

Acknowledgements

Dr. Kanovsky was supported by the MZCR Institutional support—conceptual development of research organization—DRO (FNOL, 00098892) 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Ruth L. Siongco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siongco, P.R.L., Rosales, R.L., Moore, A.P. et al. Botulinum neurotoxin injections for muscle-based (dystonia and spasticity) and non-muscle-based (neuropathic pain) pain disorders: a meta-analytic study. J Neural Transm 127, 935–951 (2020). https://doi.org/10.1007/s00702-020-02163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-020-02163-5

Keywords

Navigation