Higher zinc concentrations in hair of Parkinson’s disease are associated with psychotic complications and depression

Abstract

Parkinson’s disease (PD) is classically considered a motor disease; however, several non-motor symptoms are also present, including psychiatric complaints. In recent decades, the metals Ca, Fe, and Zn have gained prominence as potential etiologic factors in motoric signs of PD. However, metal alterations could be associated with the non-motor symptoms of PD. We wished to correlate the levels of these metals with the co-occurrence of depression, anxiety, and psychotic symptoms in PD patients. To this end, the Beck Depression Inventory, the Beck Anxiety Inventory, and the Scales for Outcomes in Parkinson’s disease-Psychiatric Complications (SCOPA-PC) were implemented to evaluate mood disorders and psychiatric complications. Flame atomic absorption spectrometry (FAAS) was used to assess concentrations of Ca, Fe, and Zn in hair samples collected from 22 clinically diagnosed PD patients, which represented the entire cohort of accessible patients in a Brazilian health registry, and 33 healthy individuals. While Ca and Fe alterations were not found to be associated with psychiatric complaints in the PD group, significantly higher levels of Zn were correlated in PD patients with depression and some psychotic symptoms. Within individual domains of the SCOPA-PC, significantly higher levels of Zn were correlated with the presence of hallucination, illusion, and paranoid ideation when compared to controls and PD patients who did not present these symptoms. Although our sample size is small and findings need to be replicated in larger and heterogeneous populations, our results provide a new perspective on the use of monitoring of Zn levels as a potential biomarker of psychiatric complaints, and may be useful in the development of more effective therapeutic approaches for the management of PD patients with co-occurrence of psychiatric disorders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aarsland D, Zaccai J, Brayne C (2005) A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord 20:1255–1263. https://doi.org/10.1002/mds.20527

    Article  PubMed  Google Scholar 

  2. Arnulf I, Leu S, Oudiette D (2008) Abnormal sleep and sleepiness in Parkinson’s disease. Curr Opin Neurol 24:472–477. https://doi.org/10.1097/WCO.0b013e328305044d

    Article  Google Scholar 

  3. Barone P, Antonini A, Colosimo C et al (2009) The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24:1641–1649. https://doi.org/10.1002/mds.22643

    Article  Google Scholar 

  4. Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J (2017) Alpha-synuclein oligomers: a new hope. Acta Neuropathol 134:819–838. https://doi.org/10.1007/s00401-017-1755-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bocca B, Alimonti A, Senofonte O et al (2006) Metal changes in CSF and peripheral compartments of parkinsonian patients. J Neurol Sci 248:23–30. https://doi.org/10.1016/j.jns.2006.05.007

    CAS  Article  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/S0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  7. Cunha JA (2001) Manual da versão em português das Escalas Beck. Casa do Psicólogo, São Paulo. On-line version ISSN 2175-3563. https://doi.org/10.1590/s1413-82712007000100004

    Article  Google Scholar 

  8. de Bartolomeis A, Latte G, Tomasetti C, Iasevoli F (2014) Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches. Mol Neurobiol 49:484–511. https://doi.org/10.1007/s12035-013-8534-3

    CAS  Article  PubMed  Google Scholar 

  9. dos Santos AB, Kohlmeier KA, Rocha ME et al (2018) Hair in Parkinson’s disease patients exhibits differences in calcium, iron and zinc concentrations measured by flame atomic absorption spectrometry (FAAS). J Trace Elem Med Biol 47:134–139. https://doi.org/10.1016/j.jtemb.2018.02.003

    CAS  Article  PubMed  Google Scholar 

  10. Fénelon G (2000) Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 123:733–745. https://doi.org/10.1093/brain/123.4.733

    Article  PubMed  Google Scholar 

  11. Fénelon G (2008) Psychosis in Parkinson’s disease: phenomenology, frequency, risk factors, and current understanding of pathophysiologic mechanisms. CNS Spectr 13:18–25. https://doi.org/10.1017/S1092852900017284

    Article  PubMed  Google Scholar 

  12. Fénelon G, Alves G (2010) Epidemiology of psychosis in Parkinson’s disease. J Neurol Sci. https://doi.org/10.1016/j.jns.2009.08.014

    Article  PubMed  Google Scholar 

  13. Ffytche DH, Creese B, Politis M et al (2017) The psychosis spectrum in Parkinson’s disease. Nat Rev Neurol 13:81–95. https://doi.org/10.1038/nrneurol.2016.200

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fink AL (2006) The aggregation and fibrillation of α-synuclein. Acc Chem Res 39:628–634. https://doi.org/10.1021/ar050073t

    CAS  Article  PubMed  Google Scholar 

  15. Forte G, Alimonti A, Violante N et al (2005) Calcium, copper, iron, magnesium, silicon and zinc content of hair in Parkinson’s disease. J Trace Elem Med Biol 19:195–201. https://doi.org/10.1016/j.jtemb.2005.08.003

    CAS  Article  PubMed  Google Scholar 

  16. Fukushima T, Tan X, Luo Y et al (2013) Heavy metals in blood and urine and its relation to depressive symptoms in Parkinson’s disease patients. Fukushima J Med Sci 59:76–80. https://doi.org/10.5387/fms.2014-8

    CAS  Article  PubMed  Google Scholar 

  17. Gammoh NZ, Rink L (2017) Zinc in infection and inflammation. Nutrients 9(6):624. https://doi.org/10.3390/nu9060624

    CAS  Article  PubMed Central  Google Scholar 

  18. Gibson G, Mottram PG, Burn DJ et al (2013) Frequency, prevalence, incidence and risk factors associated with visual hallucinations in a sample of patients with Parkinson’s disease: a longitudinal 4-year study. Int J Geriatr Psychiatry 28(6):626–631. https://doi.org/10.1002/gps.3869

    CAS  Article  PubMed  Google Scholar 

  19. Harding AJ, Stimson E, Henderson JM, Halliday GM (2002) Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 125(Pt 11):2431–2445. https://doi.org/10.1093/brain/awf251

    Article  PubMed  Google Scholar 

  20. Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A (2014) The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 12:219–238. https://doi.org/10.2174/1570159X12666140324183406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Janzen J, Van’T Ent D, Lemstra AW et al (2012) The pedunculopontine nucleus is related to visual hallucinations in Parkinson’s disease: preliminary results of a voxel-based morphometry study. J Neurol 259(1):147–154. https://doi.org/10.1007/s00415-011-6149-z

    CAS  Article  PubMed  Google Scholar 

  23. Jiao J, Guo H, He Y et al (2016) Meta-analysis of the association between serum iron levels and Parkinson’s disease: evidence from 11 publications. Brain Res 1646:490–493. https://doi.org/10.1016/j.brainres.2016.06.044

    CAS  Article  PubMed  Google Scholar 

  24. Lai J, Moxey A, Nowak G et al (2012) The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord 136(1–2):e31–e39. https://doi.org/10.1016/jAD.2011.06.022

    CAS  Article  PubMed  Google Scholar 

  25. Lauterbach EC (2004) Differential DSM-III psychiatric disorder prevalence profiles in dystonia and Parkinson’s disease. J Neuropsychiatr 16:29–36. https://doi.org/10.1176/appi.neuropsych.16.1.29

    Article  Google Scholar 

  26. Leal SS, Botelho HM, Gomes CM (2012) Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord Chem Rev 256:2253. https://doi.org/10.1016/j.ccr.2012.04.004

    CAS  Article  Google Scholar 

  27. Marsh L (2013) Depression and Parkinson’s disease: current knowledge. Curr Neurol Neurosci Rep 1:2. https://doi.org/10.1007/s11910-013-0409-5

    CAS  Article  Google Scholar 

  28. Miyake Y, Tanaka K, Fukushima W et al (2011) Dietary intake of metals and risk of Parkinson’s disease: a case-control study in Japan. J Neurol Sci 306:98–102. https://doi.org/10.1016/j.jns.2011.03.035

    CAS  Article  PubMed  Google Scholar 

  29. Miyasaki JM, Al Hassan K, Lang AE, Voon V (2007) Punding prevalence in Parkinson’s disease. Mov Disord 22(8):1179–1181. https://doi.org/10.1002/mds.21296

    Article  PubMed  Google Scholar 

  30. Mlyniec K (2015) Zinc in the glutamatergic theory of depression. Curr Neuropharmacol 13(4):505–513. https://doi.org/10.2174/1570159X13666150115220617

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Młyniec K, Davies CL, de Agüero Sánchez IG et al (2014) Essential elements in depression and anxiety. Part I. Pharmacol Rep 66:534–544. https://doi.org/10.1016/j.pharep.2014.03.001

    CAS  Article  PubMed  Google Scholar 

  32. Mostile G, Cicero CE, Giuliano L et al (2017) Iron and Parkinson’s disease: a systematic review and meta-analysis. Mol Med Rep 15(5):3383–3389. https://doi.org/10.3892/mmr.2017.6386

    CAS  Article  PubMed  Google Scholar 

  33. Petrilli MA, Kranz TM, Kleinhaus K et al (2017) The emerging role for zinc in depression and psychosis. Front Pharmacol 8:414. https://doi.org/10.3389/fphar.2017.00414

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Ranjbar E, Shams J, Sabetkasaei M et al (2014) Effects of zinc supplementation on efficacy of antidepressant therapy, inflammatory cytokines, and brain-derived neurotrophic factor in patients with major depression. Nutr Neurosci 17:65–71. https://doi.org/10.1179/1476830513Y.0000000066

    CAS  Article  PubMed  Google Scholar 

  35. Reijnders JS, Ehrt U, Weber WE et al (2008) A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 23:183–189. https://doi.org/10.1002/mds.21803

    Article  PubMed  Google Scholar 

  36. Romana Pezzella F, Colosimo C, Vanacore N et al (2005) Prevalence and clinical features of hedonistic homeostatic dysregulation in Parkinson’s disease. Mov Disord 20:77–81. https://doi.org/10.1002/mds.20288

    Article  Google Scholar 

  37. Schwartz TL, Sachdeva S, Stahl SM (2012) Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front Pharmacol 3:195. https://doi.org/10.3389/fphar.2012.00195

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Solati Z, Jazayeri S, Tehrani-Doost M et al (2015) Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: a double-blind, randomized, placebo-controlled trial. Nutr Neurosci 18:162–168. https://doi.org/10.1179/1476830513Y.0000000105

    CAS  Article  PubMed  Google Scholar 

  39. Stelmashook EV, Isaev NK, Genrikhs EE et al (2014) Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry 79:391–396. https://doi.org/10.1134/S0006297914050022

    CAS  Article  PubMed  Google Scholar 

  40. Surmeier DJ, Schumacker PT, Guzman JD et al (2017) Calcium and Parkinson’s disease. Biochem Biophys Res Commun 483(4):1013–1019. https://doi.org/10.1016/j.bbrc.2016.08.168

    CAS  Article  PubMed  Google Scholar 

  41. Swardfager W, Herrmann N, Mazereeuw G et al (2013) Zinc in depression: a meta-analysis. Biol Psychiatry 74:872–878. https://doi.org/10.1016/j.biopsych.2013.05.008

    CAS  Article  PubMed  Google Scholar 

  42. Swardfager W, Herrmann N, Mazereeuw G, Lanctôt KL (2015) Reply to: serum zinc and the risk of depression in men: observations from a 20-year follow-up study. Biol Psychiatry 77:e13–e14. https://doi.org/10.1016/j.biopsych.2014.06.006

    CAS  Article  PubMed  Google Scholar 

  43. Szewczyk B, Poleszak E, Sowa-Kućma M et al (2010) The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Amino Acids 39:205–217. https://doi.org/10.1007/s00726-009-0412-y

    CAS  Article  PubMed  Google Scholar 

  44. Tsai G, Lin P-Y (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537. https://doi.org/10.2174/138161210790361452

    CAS  Article  PubMed  Google Scholar 

  45. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular link between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296. https://doi.org/10.1074/jbc.M105343200

    CAS  Article  PubMed  Google Scholar 

  46. Vashum KP, McEvoy M, Milton AH et al (2014) Dietary zinc is associated with a lower incidence of depression: findings from two Australian cohorts. J Affect Disord 166:249–257. https://doi.org/10.1016/j.jad.2014.05.016

    CAS  Article  PubMed  Google Scholar 

  47. Visser M, Verbaan D, van Rooden SM et al (2007) Assessment of psychiatric complications in Parkinson’s disease: the SCOPA-PC. Mov Disord 22:2221–2228. https://doi.org/10.1002/mds.21696

    Article  PubMed  Google Scholar 

  48. Wang Y, Shi M, Chung KA et al (2012) Phosphorylated α-synuclein in Parkinson’s disease. Sci Trans Med 4:121ra20. https://doi.org/10.1126/scitranslmed.3002566

    CAS  Article  Google Scholar 

  49. Willams DR, Warren JD, Lees AJ (2008) Using the presence of visual hallucinations to differentiate Parkinson’s disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 1:2. https://doi.org/10.1136/jnnp.2007.124677

    Article  Google Scholar 

  50. Yu X, Du T, Song N et al (2013) Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson’s disease. Neurology 80:492–495. https://doi.org/10.1212/WNL.0b013e31827f0ebb

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang G, Zhang G et al (2014) Impulisve and compulsive behaviors in Parkinson’s disease. Front Aging Neurosci 6:318. https://doi.org/10.3389/fnag

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao H-W, Lin J, Wang X-B et al (2013) Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson’s disease. PLoS One 8:e83060. https://doi.org/10.1371/journal.pone.0083060

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil for funding support of a Ph.D Grant to Altair Brito dos Santos.

Funding

This work was financially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. Grant Numbers (99999.012934/2013-05).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristi A. Kohlmeier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are the first to show that Zn alterations in PD patients are associated with psychiatric symptoms frequently seen in this disease and the first to provide an easy clinical chemistry assay combining hair samples and FAAS to evaluate Zn levels in PD patients and to correlate levels with mild psychiatric disorders.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dos Santos, A.B., Bezerra, M.A., Rocha, M.E. et al. Higher zinc concentrations in hair of Parkinson’s disease are associated with psychotic complications and depression. J Neural Transm 126, 1291–1301 (2019). https://doi.org/10.1007/s00702-019-02041-9

Download citation

Keywords

  • Neurodegeneration
  • Biomarkers
  • Metal imbalance
  • Non-motor symptoms